Additive Identity and Additive Inverse of a Matrix
Trending Questions
Q. If A=⎡⎢⎣1ωω2ωω21ω21ω⎤⎥⎦, B=⎡⎢⎣ωω21ω21ωωω21⎤⎥⎦ and C=⎡⎢⎣1ωω2⎤⎥⎦ where ω is the complex cube root of 1 , then (A+B)C is equal to
- ⎡⎢⎣000⎤⎥⎦
- ⎡⎢⎣100010001⎤⎥⎦
- ⎡⎢⎣101⎤⎥⎦
- ⎡⎢⎣111⎤⎥⎦
Q.
If A=[1−2], B=[22]and C=[−12], find 2A+B-5C
Q. Given, for a matrix
A=⎡⎢⎣535238030⎤⎥⎦,
what will be its additive identity?
A=⎡⎢⎣535238030⎤⎥⎦,
what will be its additive identity?
- ⎡⎢⎣535238030⎤⎥⎦
- ⎡⎢⎣−5−3−5−2−3−80−30⎤⎥⎦
- ⎡⎢⎣000000000⎤⎥⎦
- None of the above
Q. Given, for a matrix
B=⎡⎢⎣2−35−23−8130⎤⎥⎦,
what will be its additive inverse?
B=⎡⎢⎣2−35−23−8130⎤⎥⎦,
what will be its additive inverse?
- ⎡⎢⎣2−35−23−8130⎤⎥⎦
- ⎡⎢⎣000000000⎤⎥⎦
- ⎡⎢⎣100010001⎤⎥⎦
- ⎡⎢⎣−23−52−38−1−30⎤⎥⎦
Q. If A=⎡⎢⎣110215121⎤⎥⎦, then a11A21+a12A22+a13A23=.......
- 0
- 1
- −1
- 2
Q. If A=⎡⎢⎣6101007100910⎤⎥⎦, then Tr(AT)=
(Tr denotes trace of a matrix)
(Tr denotes trace of a matrix)
- −17
- 17
- −117
- 117
Q. Evaluate : if possible
[643−1][−13]
If not possible , give reason
[643−1][−13]
If not possible , give reason
Q.
If A=[1111], B=[1201], find AB+BA-2B
Q. If ∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣=k(a−b)(b−c)(c−a), then k is equal to
- −2
- −1
- 1
- 2
Q.
If A = ⎧⎪ ⎪ ⎪⎩23−95⎫⎪ ⎪ ⎪⎭ − ⎧⎪ ⎪ ⎪⎩157−1⎫⎪ ⎪ ⎪⎭ , then find the additive inverse of A
[12−16−6]
[−1216−6]
[12166]
[−1−2166]
Q. The rank of the matrix ⎡⎢⎣−1252−4a−41−2a+1⎤⎥⎦ is
- 1 if a = 6
- 2 if a = 1
- 3 if a = 2
- 1 if a = -6
Q. If [2132]A[−325−3]=[1001], then A =
- [1110]
- [1011]
- [1101]
- −[1110]