Finding Inverse Using Elementary Transformations
Trending Questions
Which of the following would be the Inverse of the matrix A found using Elementary Row Transformations where
A =∣∣ ∣∣131011361∣∣ ∣∣
⎡⎢⎣−5+323−2−13+31⎤⎥⎦
⎡⎢⎣−5+3232−1−3+31⎤⎥⎦
⎡⎢⎣−5+323−2−1−3+31⎤⎥⎦
⎡⎢⎣−5+3232−1−3+31⎤⎥⎦
If H=⎡⎢⎣123231312⎤⎥⎦, G=⎡⎢⎣26−100−482−84⎤⎥⎦
Find 3H−12G.
[3]
(b) If 3A=⎡⎢⎣12221−2x2y⎤⎥⎦ and A⋅AT=I, then find the value of x+y.
[3]
(c) If A=[2513], B=[4−2−13] and I is Identity matrix of same order and At is the transpose of matrix A find At.B+BI.
[4]
- 166[72−3257−29]
- 166[−54−110311]
- 166[−541103−11]
- 166[−7232−5729]
- [−45914]
- [43910]
- [4−5914]
- [−45149]
- True
- False
Elementary row transformations can be used to find Inverse for any square matrix.
True
False
- Idempotent only
- Involutary only
- Involutary and Orthogonal
- Involutary and Idempotent
- 12
- 14
- 1
- 2
- True
- False