Property 1
Trending Questions
Q.
If A ∝ B then :
B ∝ 1/A
B ∝ A
B = 1/A
B = A
Q. Prove that ;
∫π0xdxa2cos2x+b2sin2x=π22ab
∫π0xdxa2cos2x+b2sin2x=π22ab
Q. If cos−1(1√5)=θ, then what is the value of cosec−1(√5)?
- (π2)
- (π2)−θ
- (π2)+θ
- −θ
Q.
If x∝y, then x3∝y2
True
False
Q. If secθ=x+14x, prove that secθ+tanθ=2x or 12x
Q. Evaluate: sec h−1(sinθ)
- log(tanθ2)
- log(sinθ2)
- log(cosθ2)
- log(cotθ2)
Q. The value of sec2π3+cosec5π6 is equal to :
- -2
- 4
- 2
- -4
- 0
Q. Solve; log(x+1)−log(x−1)=1
Q.
If B ∝ C then :
C ∝ B
C ∝ 1/B
C = 1/B
C =B
Q. Find the area bounded by the parabola y=x2−4, theX -axis and the linesx=−1 and x=2 ?
Q. Let an, n≥1, be an arithmetic progression with first term 2 and common difference 4. Let Mn be the average of the first n terms. Then the sum 10∑n=1Mn is
- 110
- 335
- 770
- 1100
Q. Solve the following equations.
x2logx=10x2
x2logx=10x2
Q. Show that :
cos30∘+sin60∘1+sin30∘+cos60∘=cos30∘.
cos30∘+sin60∘1+sin30∘+cos60∘=cos30∘.
Q. Evaluate :5sin230∘+cos245∘+4tan260∘2sin30∘cos60∘+tan45∘
- 1
- 916
- 737
- 4712
Q. The value of sin2(cos−112)+cos2(sin−113) is
- 1736
- 5936
- 3659
- None of these
Q. Solve for x in the equation log[log(2+log2(x+1))]=0
Q. Differentiate the following w.r.t.x:
cos−1(sinx2)
cos−1(sinx2)
Q. If √3tanθ=3sinθ, find the value of sin2θ−cos2θ.
- √2√3
- 13
- 12
- 1√3
Q. If cos4θ⋅sec2α, 12 and sin4θ⋅cosec2α are in AP, then cos8θ⋅sec6α , 12 and sin2θ⋅cosec6α are in
- AP
- GP
- HP
- none of these
Q. Solve: log7x=log9x−2
Q. Prove the following identity-
cosec θcosec θ−1+cosec θcosec θ+1=2sec2θ
cosec θcosec θ−1+cosec θcosec θ+1=2sec2θ
Q. ∫sin−1√xa+xdx
- (a+x)arctan√xa−√ax+c
- (a+x)arctan√xa+√ax+c
- (a−x)arctan√xa−√ax+c
- (a+x)arccot√xa−√ax+c
Q. Solve: ∫1(2x−3)(x−4)dx
Q. If tanθ+secθ=ex, then cosθ equals-
- (ex+e−x)2
- (ex−e−x)2
- 2(ex+e−x)
- (ex−e−x)(ex+e−x)
Q. cos23π5+cos24π5 is equal to?
- 45
- 54
- 52
- 34