Trigonometric Identities
Trending Questions
Prove that .
If cosec θ+cot θ=p, then prove that cos θ=p2−1p2+1.
Prove:cotA+cosecA−1cotA−cosecA+1=1+cosAsinA
(cosecA−sinA)(secA−cosA)=1(tanA+cotA)
True
False
If 3sinθ+4cosθ=5, then the value of sinθ is _____.
23
45
35
53
Express the ratios sinA and cosA in terms of tanA.
tanA√1+tan2A, 1√1+tan2A
1√1+tan2A, tanA√1+tan2A
tanA√1−tan2A, 1√1−tan2A
1√1−tan2A, tanA√1−tan2A
If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
(a) 27 (b) 25 (c) 24 (d) 23
If secθ−tanθ=13, the value of secθ+tanθ is:
1
2
3
4
If , then the general value of is
None of these
(cosec θ−cot θ)2 = ?
(a) 1+cos θ1−cos θ (b) 1−cos θ1+cos θ (c) 1+sin θ1−sin θ (d) none of these
If then is
If (cos θ + sec θ) = 52 then (cos2 θ+sec2θ) = ?
(a) 214 (b) 174 (c) 294 (d) 334
What is in terms of trigonometric functions?
How do you prove ?
If A = 30∘, verify that:
(i) sin 2A=2 tan A1+tan2 A (ii) cos 2A=1−tan2 A1+tan2 A (iii) tan 2A=2 tan A1−tan2 A
If 3 cot θ=2, show that 4sinθ−3cosθ(2sinθ+6cosθ)=13.
If (tanθ+sinθ)=m and (tanθ−sinθ)=n, prove that
(m2−n2)2=16mn.
If and lies in the second quadrant , then
If 3x=cosec θ and 3x=cot θ then 3(x2−1x2) = ?
(a) 127 (b) 181 (c) 13 (d) 19
Prove- sin theta/cot theta + cosec theta=2+sin theta/cot theta- cosec theta
If , then is equal to
None of these
Prove that:
SinA/cotA+cosecA =2+(sinA/cotA - cosecA)
If sec θ=135, show that 2 sin θ−3 cos θ4 sin θ−9 cos θ=3
If sec θ=54, find the value of sinθ−2 cos θtan θ−cot θ
The value of sin18∘cos72∘ is ______.
1
0
-1
12
If then equal to
If then find the value of is
If secθ + tanθ = x, then tanθ is:
(x2+1)x
(x2+1)2x
(x2−1)2x
(x2−1)x