Using Monotonicity to Find the Range of a Function
Trending Questions
Q. The range of the function f(x) = sin [x], −π4≤x≤π4 where [x] denotes the greatest integer, is
- {0, ± sin 1}
- {0, - sin 1}
- {0}
- {0, -1}
Q. The range of the function f(x)=x+3|x+3|, x≠−3 is
{-1, 1}
{3, -3}
R-{-3}
all positive integers
Q. If 2f(sin x)+f(cos x)=x ∀ x ϵ R then range of f(x) is
- [−π3, π3]
- [−2π3, π3]
- [−2π3, π6]
- [−π6, π6]
Q. If f(x)=ln(x2+ex2+1) , then range of f(x) is
- (0, 1)
- (0, 1]
- [0, 1)
- {0, 1}