Condition for Two Lines to Be Perpendicular
Trending Questions
In the triangle ABC with vertices A(2, 3), B (4, -1) and C(1, 2), find the equation and length of altitude from the vertex A
Find the equation of a line passing through (2, 3) and inclined at an angle of 135∘ with the positive direction of x-axis
x + y - 5 = 0
x + y + 1 = 0
x + y - 1 = 0
x + y + 5 = 0
If the area of the parallelogram whose sides are x + 2y + 3 = 0, 3x + 4y - 5 = 0, 2x+4y+5=0 and 3x + 4y - 10 = 0 is 'a' sq. unit. Find the value of 4a
Reduce the equation 3x−2y+4=0 to intercepts form and find the length of the segment intercepted between the axes.
- −5
- 353
- 5
- −353
- x+5y=5
- x+5y=±5√2
- x−5y=5
- x−5y=5√2
- (m1n2−m2n1), (n1l2−l1n2), (l1m2−l2m1)
- (l1l2−m2m1), (m1m2−n1n2), (n1n2−l2l1)
- 1√l21+m21+n21, 1√l22+m22+n22, 1√3
- 1√3, 1√3, 1√3
Q(h, k) is the foot of the perpendicular of P(3, 6) on the line x - 2y + 4 =0.
If the slope of PQ is m, find m2.
- 5+√652
- 5−√652
- 5−√654
- 5+√654
Q(h, k) is the foot of the perpendicular of P(3, 6) on the line x - 2y + 4 =0.
If the slope of PQ is m, find m2.
- a=b
- 2a+b=0
- 3a−5b=0
- 5a−2b=0
- x(1+tanθ)−y(1+tanθ)=py(1+tanθ)=x(1−tanθ)
- x(cosθ+sinθ)−y(cosθ+sinθ)=py(cosθ+sinθ)=x(cosθ+sinθ)
- x(cosθ−sinθ)+y(cosθ+sinθ)=py(cosθ−sinθ)=x(cosθ+sinθ)
- x(1+tan(π4+θ)−y(1+tan(π4+θ)=py(tan(π4+θ))=x(tan(π4−θ))