Definite Integral as Limit of Sum
Trending Questions
Q.
limπ→∞199+299+399+⋯⋯n99n100= [EAMCET 1994]
9100
1100
199
1101
Q. Show that does not exist.
Q.
Evaluate limx→2(e3x−1x)
Q. limn→∞(nn2+12+nn2+22+nn2+32+...+15n)
is equal to :
is equal to :
- tan−1(2)
- tan−1(3)
- π/4
- π/2
Q.
limπ→∞ 1ρ+2ρ+3ρ+⋯+nρnρ+1= [AIEEE 2002]
- 1p+1
1p−1
- 1p−1p−1
1p+2
Q. Let f(x)=limn→∞⎛⎜
⎜⎝nn(x+n)(x+n2)⋯(x+nn)n!(x2+n2)(x2+n24)⋯(x2+n2n2)⎞⎟
⎟⎠xn, for all x>0. Then
- f(12)≥f(1)
- f(13)≤f(23)
- f′(2)≤0
- f′(3)f(3)≥f′(2)f(2)
Q.
The value of limn→∞[n1+n2+n4+n2+n9+n2+⋯+12n] is equal to [Bihar CEE 1994]
π2
π4
- 1
None of these
Q.
limn→∞[1n+1n+1+1n+2+⋯+12n]= [Karnataka CET 1999]
- 0
- loge 4
loge 3
- loge 2
Q. The value of ∫x2−1(x2+1)√1+x4dx is (where C is integration constant)
- sec−1⎛⎜ ⎜⎝√x2+1x2√2⎞⎟ ⎟⎠+C
- 12√2sec−1⎛⎜ ⎜⎝√x2+1x2√2⎞⎟ ⎟⎠+C
- 1√2sec−1(x+1x√2)+C
- 12sec−1⎛⎜ ⎜⎝√x2+1x2√2⎞⎟ ⎟⎠+C
Q. If usinx + vcosx=5 anf ucosx-vsinx=7 then u"v - uv" equals (the differential is with respect to x)
A) - 74(v)³/u³
B) 74 v (v)²/u³
C) 1
D) 74u (v)²
Q. limn→∞∑nr=1nn2+r2x2, x>0is equal to :
- tan−1 x
- xtan−1 x
- tan−1xx
- tan−1xx2
Q.
limπ→∞ 1n ∑2nr=1r√n2+r2 equals [IIT 1997 Re-exam]
- 1+√5
- −1+√5
- −1+√2
- 1+√2
Q. The value of limn→∞[n(n+1)(n+2)+n(n+2)(n+4)+⋯+16n] is:
- ln2
- ln35
- ln3
- ln32