Derivative of Standard Inverse Trigonometric Functions
Trending Questions
Q. If y = tan−1√(1+sinx1−sinx), π2<x<π, then dydx equals
- −12
- −1
- 12
- 1
Q. Match the following functions to their derivatives?
FunctionDerivativesa) sin−1x1) −1|x|√x2−1b) cos−1x2) −11+x2c) tan−1x3) 1|x|√x2−1d) sec−1x4) 11+x2e) cot−1x5) −1√1−x2f) cosec−1x6) 1√1−x2
FunctionDerivativesa) sin−1x1) −1|x|√x2−1b) cos−1x2) −11+x2c) tan−1x3) 1|x|√x2−1d) sec−1x4) 11+x2e) cot−1x5) −1√1−x2f) cosec−1x6) 1√1−x2
- a-6, b-5, c-4, d-3, e-2, f-1
- a-5, b-6, c-4, d-3, e-2, f-1
- a-6, b-5, c-3, d-4, e-2, f-1
- a-6, b-5, c-3, d-2, e-1, f-2
Q. Match the following functions to their derivatives?
FunctionDerivativesa) sin−1x1) −1|x|√x2−1b) cos−1x2) −11+x2c) tan−1x3) 1|x|√x2−1d) sec−1x4) 11+x2e) cot−1x5) −1√1−x2f) cosec−1x6) 1√1−x2
FunctionDerivativesa) sin−1x1) −1|x|√x2−1b) cos−1x2) −11+x2c) tan−1x3) 1|x|√x2−1d) sec−1x4) 11+x2e) cot−1x5) −1√1−x2f) cosec−1x6) 1√1−x2
- a-6, b-5, c-4, d-3, e-2, f-1
- a-5, b-6, c-4, d-3, e-2, f-1
- a-6, b-5, c-3, d-4, e-2, f-1
- a-6, b-5, c-3, d-2, e-1, f-2
Q. If , then general value of x is
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q. If y=sin−1 (cos x), where x∈(0, 2π), then the value of dydx is
- −1, if 0<x<π
- 1, if π<x<2π
- 1, if 0<x<π
- −1, if π<x<2π
Q. Prove that:
Q. Write the values of x in [0, π] for which and cos 2x are in A.P.
Q.
If y = sec(tan−1x), then dydx at x = 1 is equal to:
1√2
12
1
0
Q. If f(x)=cot−1(xx−x−x2), then f′(1) equals
- -1
- 1
- log 2
- -log 2
Q. Prove that:
(i)
(ii)
(i)
(ii)
Q.
If y = sec(tan−1x), then dydx at x = 1 is equal to:
1√2
12
1
0
Q. Write the value of