Differentiation under Integral Sign
Trending Questions
Q.
If exists and is equal to , then the value of is:
Q. Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), x-axis and the ordinates x=π4 and x=β>π4 is βsinβ+π4cosβ+√2β. Then f′(π2) is
- (π2−√2−1)
- (π4+√2−1)
- −π2
- (1−π4−√2)
Q. 12. f (x+y) + f (x-y) = 2f(x)f (y) and f (alpha) = -1 . Find the period of f
Q. If f(x) is differentiable and ∫t20xf(x)dx=25t5, then f(425) equals
- 25
- −52
- 1
- 52
Q.
If f(x) = x2 – x + 1; g(x) = 7x – 3, be two real functions then (f + g)(3) is
18
3
25
7
Q. A function y = f(x) satisfies the condition f(x)sinx+f(x)cosx=1, f(x) being bounded when x→0. If |=π2∫0f(x)dx then
- π2<|<π24
- π4<|<π22
- 1<|<π2
- 0<|<1
Q. If f is a continuous function then, ∫2a0f(x)dx=∫a0f(x)dx+∫2a0f(2a−x)dx.
- True
- False
Q. 45. The largest Set of real values of x for which f(x)=(x+2)(5-x) - 1/x-4 is a real function is 1)(2, 5] 2)[3, 4]
Q. (i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii) k xn
(ix)
(x) x2 + x + 3
(xi) (x + 2)3
(xii) x3 + 4x2 + 3x + 2
(xiii) (x2 + 1) (x − 5)
(xiv)
(xv)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii) k xn
(ix)
(x) x2 + x + 3
(xi) (x + 2)3
(xii) x3 + 4x2 + 3x + 2
(xiii) (x2 + 1) (x − 5)
(xiv)
(xv)
Q. Consider f(x)=1+2x∫0 et2⋅f(t2)(2t)√16−t4dt−0∫xf(t)⋅etsin−1(t2)dt and h(x)=sin(e−xln(f(x))).
Then the range of y=h(x)+4x+5 is
Then the range of y=h(x)+4x+5 is
- [1, ∞)
- (1, ∞)
- [2, 10]
- (2, 10)
Q.
(a) 0
(b) 1
(c) 4
(d) not defined
(a) 0
(b) 1
(c) 4
(d) not defined
Q. Let f(x) be a continuous and not a constant function of all x in its domain, such that
(f(x))2=x∫0f(t)4sin2t−4sin2t+4dt and f(0)=0, then
(f(x))2=x∫0f(t)4sin2t−4sin2t+4dt and f(0)=0, then
- f(3π4)=log(12)
- f(π4)=log(32)
- f(π4)=log(54)
- f(π2)=2
Q. If I=x∫0[cost]dt, where x∈[(4n+1)π2, (4n+3)π2], n∈N and [⋅] represents greatest integer function, then the value of I is
- π2(2n−1)−2x
- π2(2n−1)+x
- π2(2n+1)−x
- π2(2n+1)+x
Q. Let f(x) satisfies the relation f(x)=cosx−x∫0f′(t)(2cost+cos2t) dt. Then, which of the following is/are correct?
- The maximum value of f(x) is 1.
- The maximum value of f(x) is −2.
- f(x) is a periodic function with fundamental period 2π.
- f(x) is a bounded function.
Q. If x∫0f(t) dt=x2+1∫xt2f(t) dt, then f′(12) is:
- 1825
- 45
- 2425
- 625
Q. The intercepts on x-axis made by tangents to curve, y=x∫0|t|dt, x∈R, which are parallel to the line y=2x, are equal to:
- ±1
- ±2
- ±3
- ±4
Q. Let f be a given function continuous and derivable for all x and satisfying the relation f(x+y). f(x-y) = f²(x). If f(0) ≠0 find f(x)
Q.
if the ratio of the roots of ax2+bx+c=0 is equal to the roots of the equation x2+x+1=0 then a, b, c are in
a)A.P
b)GP
c)HP
d)none