Domain and Range of Basic Inverse Trigonometric Functions
Trending Questions
Q. Range of f(x) =
sin−1x + tan−1x +sec−1x is
sin−1x + tan−1x +sec−1x is
- (π4, 3π4)
- (π4, 3π4]
- {π4, 3π4}
- none of these
Q. Consider the function f(x)=cos−1([2x])+sin−1([2x−1]) (where [.] denotes greatest integer function), then
- Domain of f(x) is x∈(−∞, 0]
- Range of f(x) is singleton set
- f(x) is an even function
- f(x) is an odd function
Q. Q.34
If f(x) and g(x) are periodic functions with the same fundamental period where f(x) = sinαx + cosαx and g(x) = |sinx| + |cosx|, then α is equal to
Q. Express each of the following as the product of sines and cosines:
(i) sin 12x + sin 4x
(ii) sin 5x − sin x
(iii) cos 12x + cos 8x
(iv) cos 12x − cos 4x
(v) sin 2x + cos 4x
(i) sin 12x + sin 4x
(ii) sin 5x − sin x
(iii) cos 12x + cos 8x
(iv) cos 12x − cos 4x
(v) sin 2x + cos 4x
Q. If [sin−1x]>[cos−1x] where [.] denotes the greatest integer function, then the set of values of x is:
- [cos 1, 1]
- [cos 1, sin 1]
- [sin 1, 1]
- None of these
Q. The trigonometric equation sin−1x=2sin−1 a has a solution for:
- all real values of a
- |a|<12
- |a|≤1√2
- 12<|a|<1√2
Q. If sin−1x+sin−1y+sin−1z=3π2, then xy +yx -xz =
- \N
- 1
- 1 or -1
- None
Q.
Which of the following statements is/are correct?
1. cos2A = 1+tan2A1−tan2A
2. cosec2A = 1 + cot2θ
3. sec2θ = 1 + cos2θ
Only 1
Only 2
Only 1 & 2
Only 2 & 3
Q.
__
How many of the following relations are correct?
(1)1. Sin(A+B) = sinAcosB + cosAsinB
(2)2. cos(A-B) = CosAcosB - sinAsinB
(1)3. Tan (A-B) = tanA−tanB1+tanAtanB
(2)4. Sin(A+B) (sin(A-B) = cos2A−cos2B
Q. all trigonometric formulaes
Q. If f(x)=(sin−1x)2+(cos−1x)2, then
- f(x) has the least value of π28
- f(x) has the greatest value of 5π28
- f(x) has the least value of π216
- f(x) has the greatest value of 5π24
Q. If sin−1x+sin−1y+sin−1z=3π2
then ∑2r=1(x100r+y103r)∑x201y201 =
then ∑2r=1(x100r+y103r)∑x201y201 =
- \N
- 2
- 4
- 43
Q.
If z+1z=√3 then ∑5r=1(zr+1zr)2 =
10
8
15
12
Q. Find the general solution for the trigonometric equation cos2x+cosx=0.
- x∈{2nπ±π3}∪{2nπ±π2}, n∈Z
- x∈{2nπ±π3}∪{2nπ±π}, n∈Z
- x∈{2nπ+π3}∪{2nπ+π}, n∈Z
- None of the above.
Q. If y=sin−1x+tan−1x+sec−1x, then set of values of y is
- −π2, 3π4
- −3π4, 3π4
- π4, 3π4
- −π4, π4
Q. If cot−1nπ>π6, n ϵ N, then the maximum value of n =
- 6
- 5
- 4
- None
Q. The domain of the function cos−1(3x−2) is
- (13, 1]
- (−1, 13]
- (−1, 1]
- (−13, 13]
Q. If xϵ[−1, 1], then range of tan−1(−x) is
- [3π4, 7π4]
- [3π4, 5π4]
- [π, 0]
- [−π4, π4]
Q. The range of f(x)=cos−1x+2tan−1x+3cosec−1x is
- [−π, 2π]
- ϕ
- (−π, 2π)
- {−π, 2π}
Q. If 22πsin−1x−2(a+2)2πsin−1x+8a<0 for atleast one real x, then
- 18≤a<2
- a<2
- a∈R−{2}
- a∈[0, 18)∪(2, ∞)
Q. The number of solutions of the equation tan−1(x1−x2)+tan−1(1x3)=3π4 belonging to the interval (0, 1) is
- \N
- 1
- 2
- 3