Evaluation of Limit
Trending Questions
Q. limn→∞1+5+52+...+5n1−25n
- 0
- −1
- 1
- ∞
Q.
If X=1+a+a2+....∞, where |a| < 1 and y=1+b+b2+.....∞ where |b| <1,
prove that 1+ab+a2b2+.....∞xyx+y−1
Q. If for all real triplets (a, b, c), f(x)=a+bx+cx2; then 1∫0f(x)dx is equal to :
- 2(3f(1)+2f(12))
- 13(f(0)+f(12))
- 12(f(1)+3f(12))
- 16(f(0)+f(1)+4f(12))
Q. Let the first term a of an infinite G.P. is the value of x, where the function f(x)=7+2xloge25−5x−1−52−x has the greatest value and the common ratio r is equal to limx→0x∫0t2x2tan(π+x) dt. Also, let S be the sum of infinite terms of G.P.
List IList II (A)a(P)4(B)1r(Q)3(C)S(R)2(D)a−rS(S)1(T)5
Which of the following is the only CORRECT combination?
List IList II (A)a(P)4(B)1r(Q)3(C)S(R)2(D)a−rS(S)1(T)5
Which of the following is the only CORRECT combination?
- (A)→(R), (B)→(Q)
- (A)→(P), (B)→(R)
- (A)→(S), (B)→(P)
- (A)→(Q), (B)→(T)
Q.
The value of limn→∞{(n3+1)(n3+23)(n3+33)........(n3+n3)n3}1n is equal to α.eβ∫x31+x3dx, where αϵN, βϵR, then find α−β.