General Solution of sin theta = sin alpha
Trending Questions
Q.
If , then
Q. Solve the following trigonometric equations when 00 <=ᶿ <= 900
- Cos 2ᶿ - 3 cos ᶿ + 2 = 2 sin 2 ᶿ 00 <ᶿ≤ 900
Q. The general solution of the equation is
(a)
(b)
(c)
(d) none of these
(a)
(b)
(c)
(d) none of these
Q. If , then x =
(a) 0
(b)
(c) 1
(d) none of these
(a) 0
(b)
(c) 1
(d) none of these
Q. The general solution of the trigonometrical equation sinx+cosx=1, for n = 0 , ±1, ±2, .......is given by
- x = 2nπ+12π
- None of these
- x= nπ+(−1)nπ4−π4
- x= 2nπ
Q. Solve the following equations:
(i) [NCERT EXEMPLAR]
(ii) [NCERT EXEMPLAR]
(iii) [NCERT EXEMPLAR]
(iv) [NCERT EXEMPLAR]
(v) [NCERT EXEMPLAR]
(vi) 4sinx cosx + 2 sin x + 2 cosx + 1 = 0
(vii) cosx + sin x = cos 2x + sin 2x
(viii) sin x tan x – 1 = tan x – sin x
(ix) 3tanx + cot x = 5 cosec x
(i) [NCERT EXEMPLAR]
(ii) [NCERT EXEMPLAR]
(iii) [NCERT EXEMPLAR]
(iv) [NCERT EXEMPLAR]
(v) [NCERT EXEMPLAR]
(vi) 4sinx cosx + 2 sin x + 2 cosx + 1 = 0
(vii) cosx + sin x = cos 2x + sin 2x
(viii) sin x tan x – 1 = tan x – sin x
(ix) 3tanx + cot x = 5 cosec x
Q. Write the number of values of θ in [0, 2π] that satisfy the equation .
Q. Solve the following equations:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
Q.
Find the exact value of .
Q. The general solution for sinx=√32 is given as
- 2nπ+π3
- 2nπ−π3
- nπ+(−1)nπ3
- 2nπ+(−1)nπ3
Q. Solve the following equations:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
Q. If sinθ, 1, cos2θ are in G.P., then
- θ=2nπ+(−1)nπ2, n∈Z
- θ=nπ−π2, n∈Z
- θ=2nπ−π2, n∈Z
- θ=nπ+(−1)nπ2, n∈Z
Q. Find the general solution of the equation :
tan x + tan (pi/3 + x) + tan (2pi/3 + x) = 3
tan x + tan (pi/3 + x) + tan (2pi/3 + x) = 3
Q. The equation has .... solution.
(a) finite
(b) infinite
(c) one
(d) no
(a) finite
(b) infinite
(c) one
(d) no
Q. The number of solutions of the equation sin(πx2√3)=x2−2√3x+4
- forms an empty set
- is only one
- is only two
- is greater than 2
Q. The number of values of θ in [0, 2π] that satisfy the equation
(a) 1
(b) 2
(c) 3
(d) 4
(a) 1
(b) 2
(c) 3
(d) 4
Q. For 0≤x≤2π, then 2cosec2x √12y2−y+1≤√2
- is satisfied by exactly one value of y
- is satisfied by exactly two values of x
- is satisfied by x for which cosx=12
- is satisfied by x for which sinx=0
Q. The solution of the equation lies in the interval
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q. If sin2θcos2θ=−14, then the values of θ which satisfy the equation is
- θ=nπ8+(−1)n(−π48), n∈Z
- θ=nπ4+(−1)n(−π24), n∈Z
- θ=nπ2+(−1)n(−π24), n∈Z
- θ=nπ4+(−1)n(−π12), n∈Z
Q. The general solution of the equation 2cos2θ+3sinθ=0 is
- nπ+(−1)n+1π6, n∈Z
- nπ+(−1)n5π6, n∈Z
- nπ+(−1)nπ6, n∈Z
- None of these