General Tips for Choosing Function
Trending Questions
Q. A function f (x) satisfies the following property:f (xy)= flx) f(y). Show that the function f (x) is continuous forall values of x if it is continuous at x 1.
Q. 3. A real valued function f(x) satisfies the equation f(x+y) = f(x) f(a-y) + f(y) f(a-x), where x, y belongs to R , where a is a constant and f(0) = 0 , then f(2a-x) is (1) -f(x) (2) f(x) (3) f(a-x) (4) f(-x)
Q.
Let f(x) = 2x + 1. Then the number of real values of x for which the three numbers f(x), f(2x), f(4x) are in G.P. is
Q. 16. A Function F(x) satisfies the functional equation x F(x) + F(1-x) = 2x - x, for all real x. What should be F(x).
Q. Let f:N→R be a function satisfying the following conditions:
f(1)=1 and f(1)+2f(2)+…+nf(n)=n(n+1)f(n) for n≥2.
If f(1003)=1K, then K equals
f(1)=1 and f(1)+2f(2)+…+nf(n)=n(n+1)f(n) for n≥2.
If f(1003)=1K, then K equals
- 1003
- 2003
- 2005
- 2006
Q. If f(x) is a polynomial of degree n such that f(0)=0, f(1)=12, ...., f(n)=nn+1, then the value of f(n+1) is
- 1 when n is odd
- nn+2 when n is even
- −nn+1 when n is odd
- −1 when n is even
Q. If a function f:Z→Z is defined as mf(x)+f(my)=f(f(x+y)), where m is a non-zero constant, then which of the following is/are correct?
- f(x)=mx+n, n∈Z
- f(x)=nx+m, n∈Z
- f(x)=0
- f(1), f(4), f(7), f(10) are in A.P.
Q. ___
If f(xy) = f(x)+f(y), and f(e) = 1, then find the value of f(e2)
Q. For real numbers x and y, the relation f satisfies f(xy) = f(x).f(y) and f(0)≠0. Find the value of f(2019).
Q. ___
If f(xy) = f(x)+f(y), and f(e) = 1, then find the value of f(e2)
Q. let A={-2, -1, 0, 1, 0} and f:A->Z be a function defined by f(x)=x2 - 2x - 3. find a. range of f and b.pre-images of 6, -3, 5
Q. If f(x1)−f(x2)=f(x1−x21−x1x2) for x1, x2 ϵ (-1, 1), then f(x) is
- log1−x1+x
- log2+x1−x
- tan−11−x1+x
- tan−11+x1−x
Q. If f(x) is a polynomial function satisfying
f(x)f(1x)=f(x)+f(1x) and f(1)=2 then the number of such functions possible is/are
f(x)f(1x)=f(x)+f(1x) and f(1)=2 then the number of such functions possible is/are
- 1
- 2
- more than 2 but finite
- infinitely many
Q. A real valued function f(x) satisfies the functional equation 4f(x) + 5f(6 – x) = x2 + 5. Then the value of 9f(2) is equal to
Q. If f:R→R satisfies f(x+y) = f(x) + f(y), for all x, y ∈R and f(1) = 7, then ∑nr=1 f(r) is equal to
- 7n2
- 7(n+1)2
- 7n(n+1)
- 7n(n+1)2
Q. A function f(x) satisfies f(x + y) = f(x) + y for all value x, y belongs to real number and f(0)=5. then f(2020) is equal to
Q. A real valued function f(x) satisfies the functional equation f(x-y)=f(x)f(y)-f(a-x).f(a+y) where a is given constant and f(0)=1 , f(2a-x)=
(1) -f(x)
(2) f(x)
(3) f(a-x)
(4) f(-x)
Q. Let f(x)=f1(x)−2f2(x),
where, f1(x)={min{x2, |x|}, |x|≤1 max{x2, |x|}, |x|>1
and, f2(x)={min{x2, |x|}, |x|>1 max{x2, |x|}, |x|≤1
and, g(x)={min{f(t): −3≤t≤x, −3≤x<0}max{f(t): 0≤t≤x, 0≤x≤3}
The graph of y=g(x) in its domain is broken at
where, f1(x)={min{x2, |x|}, |x|≤1 max{x2, |x|}, |x|>1
and, f2(x)={min{x2, |x|}, |x|>1 max{x2, |x|}, |x|≤1
and, g(x)={min{f(t): −3≤t≤x, −3≤x<0}max{f(t): 0≤t≤x, 0≤x≤3}
The graph of y=g(x) in its domain is broken at
- 1 point
- 2 points
- 3 points
- None of these
Q. A real-valued function f(x) satisfies the equation f(x−y)=f(x)f(y)−f(a−x)f(a+y) where 'a' is a constant and f(0) = 1. Then f(2a - x) is equal to
- -f(x)
- f(x)
- f(a)+f(a-x)=0
- f(-x)
Q. If f(x) = x2, find .
Q. If a function F is such that F(0)= 2, F (1) = 3, F (x + 2) = 2 F(x) – F (x -1) for x ≤ 0, then F(5) is equal to
- -7
- -3
- 17
- 13
Q. For every pair of number x and y the function f satisfies 2f(x-y)= f(x)f(y) then the value of f(2) isa.2b.1/2c.0d.4
Q. If f:R→R satisfies f(x+y) = f(x) + f(y), for all x, y ∈R and f(1) = 7, then ∑nr=1 f(r) is equal to
- 7n2
- 7(n+1)2
- 7n(n+1)
- 7n(n+1)2
Q.
If f:R→R satisfies f(x+y)=f(x)+f(y), for all x, y∈R and f(1)=7 , then ∑nr=1f(r) is
7n(n+1)2
7n2
7(n+1)2
7n+(n+1)
Q.
If f(x+y) = f(x) . f(y) , then
f(x)=akx
f(x)=0
f(x)=kx
f(x)=xn