Geometrical Representation of Argument and Modulus
Trending Questions
Q.
If and , then
Q.
If , then find the value of
Q.
The period of the function is:
Q.
Let the function be defined by . Suppose, the function has a local minimum at precisely when , where . Then the value of is _____.
Q. Let z be a complex number such that ∣∣∣2z+1z∣∣∣=1 and arg(z)=θ, then minimum value of 8sin2θ is
- 0
- 5
- 7
- 8
Q. The imaginary part of (z−1)(cosα−isinα)+(z−1)−1×(cosα+isinα) is zero, if
- |z−1|=1
- arg(z−1)=2α
- arg(z−1)=α
- |z−1|=2
Q. If ′z′ lies on the circle |z−2i|=2√2, then the value of arg(z−2z+2) is equal to
- π3
- π6
- π4
- π2
Q. If z and ω are two complex numbers such that |zω|=1 and arg(z)−arg(ω)=3π2, then arg(1−2¯¯¯zω1+3¯¯¯zω) is
(Here arg(z) denotes the principal argument of complex number z )
(Here arg(z) denotes the principal argument of complex number z )
Q. Polar form of z=(1+7i)(2−i)2 is
- √2(cos3π4+isin3π4)
- 2(cos3π4+isin3π4)
- √2(cosπ4+isinπ4)
- 2(cosπ4+isinπ4)
Q. sin2(α−β)+sin2(β−γ)+sin2(γ−α) =−4sin(α−β)sin(β−γ)sin(γ−α).
Q. The continued product of the four values of [cos(π3)+isin(π3)]3/4 is
- −1
- 1
- 2
- −2
Q.
Prove the identity
Q. If ∣∣∣z1z2∣∣∣=1 and arg(z1z2)=0, then
- z1=z2
- |z2|2=z1z2
- z1z2=1
- z1=2z2