Indeterminate Forms
Trending Questions
The value of is
None of these
- In 3
- In 2
- In 4
The limiting value of(cos x)1/sin xas~x→0 is
0
1/e
1
e
The value oflimn→∞4√n5+2−3√n2+15√n4+2−2√n3+1is
1
0
∞
-1
limx→1 logxx−1 =
[Rpet 1996; MP PET 1996; P.CET 2002]
1
-1
0
limx→∞logε[x]x, where[x]denotes the greatest integer less than or equal to x, is:
1
-1
0
Does not exist
limx→0(1+x)12−(1−x)12x
limx→1log xx−1
- −1
- 1
- 0
- ∞
limx→∞√x2+1−3√x2+14√x4+1−5√x4−1isequalto
1
-1
0
1/2
- \N
- 12
- 1
- 2
limx→∞(x5+5x+3x2+x+2)x equals
e3
e4
e2
e
limx→∞√x2+1−3√x2+14√x4+1−5√x4−1isequalto
1
-1
0
1/2
- −1
- 1
- 0
- ab
Find limx→0 f(x) and limx→1 f(x) where f(x)= {2x+3x≤03(x+1)x>0
- A+4B=0
- A−3B=0
- f(1)=8
- f′(1)=−30
- −1
- 1
- 16
- 32
k = limx→∞⎛⎜ ⎜⎝1000∑k=1(x+k)mxm+101000⎞⎟ ⎟⎠ is (m > 101)
10
102
103
104
- 23
- −34
- 1
- 0
- e
- 1e2
- 1e
- e2
The value oflimn→∞4√n5+2−3√n2+15√n4+2−2√n3+1is
1
0
-1
∞
If both limx→af(x) and limx→ag(x) and exist finitely and limx→ag(x)=0, then
limx→af(x)g(x)=limx→af(x)limx→ag(x)
True
False
- −20
- 20
- 1
- does not exist
The value of limx→∞[√x+√x+√x−√x]is.
1/2
1
0
-1/2
limx→1log xx−1
limn→∞ n((2n+1)2)(n+2)(n2+3n−1) =
0
2
4
∞