Integration by Partial Fractions
Trending Questions
Q. 65. Differentiate log sec x using first principle
Q. Let f(x)=∣∣
∣∣cosxsinxcosxcox2xsin2x2cos2xcos3xsin3x3cos3x∣∣
∣∣, then f′(π2) is equal to
- 6
- 4
- 2
- 8
Q. Let α∈(0, π2) be fixed. If the integral ∫tanx+tanαtanx−tanαdx=A(x)cos2α+B(x)sin2α+C, where C is a constant of integration, then the functions A(x) and B(x) are respectively:
- x−α and loge|sin(x−α)|
- x+α and loge|sin(x−α)|
- x−α and loge|cos(x−α)|
- x+α and loge|sin(x+α)|
Q. If ∫5tanxtanx−2=x+aln|bsinx−dcosx|+k, then a is equal to :
- -1
- -2
- 1
- 2
Q. If is equal to
(a)
(b)
(c)
(d) none of these
(a)
(b)
(c)
(d) none of these
Q. ∫x2(x2+1)(x2+4)dx is equal to
−13tan−1x+23tan−1x2+C
−13tan−1x−23tan−1x2+C
13tan−1x+23tan−1x2+C- 13tan−1x−23tan−1x2+C
Q. If sin4Aa+cos4Ab=1a+b, then sin8Aa3+cos8Ab3=
Q. If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
(a) a − ib
(b) a2 − b2
(c) a2 + b2
(d) none of these
(a) a − ib
(b) a2 − b2
(c) a2 + b2
(d) none of these
Q.
If 1(x − 1)(x + 2)(2x + 3) can be expressed as Ax − 1 + Bx + 2 + C2x + 3 then what will be the respective values of A, B and C?
115, 13, 45
115, 13, 4−5
45, 13, 115
4−5, 13, 115
Q. While using the method of partial fraction, the degree of polynomial in numerator should not be less than that of denominator.
- True
- False
Q. If , x ∈ (−10, 10) and , then k =
(a) 0.5
(b) 0.6
(c) 0.7
(d) 0.8
(a) 0.5
(b) 0.6
(c) 0.7
(d) 0.8
Q. 16 Superset and buntons law
Q. Find the derivative of x^5 logx+x^2.3^x)
Q. The number of solutions of the equation cos(π√x−4)cos(π√x)=1 is
- zero
- 1
- 2
- Infinite
Q. Evaluate ∫x dx(x−1)(x2+4)
- 15log(x−1|+110log(x2+4)+25tan−1(x2)+C
- 15log(x−1|−110log(x2+4)+25tan−1(x2)+C
- −15log(x−1|−110log(x2+4)+25tan−1(x2)+C
- 15log(x−1|−110log(x2+4)−25tan−1(x2)+C