Integration by Substitution
Trending Questions
Q. The integral e∫1{(xe)2x−(ex)x}logex dx is equal to:
- 32−1e−12e2
- 32−e−12e2
- −12+1e−12e2
- 12−e−1e2
Q.
If , where is a constant of integration, then the ordered pair can be:
Q.
If , then the value of
Q.
The value of is
Q. Number of integer(s) for which the function
f(x)=sin−1(log2(x3)) is defined is
f(x)=sin−1(log2(x3)) is defined is
Q. The evaluation of ∫pxp+2q−1−qxq−1x2p+2q+2xp+q+1dx is
- −xpxp+q+1+C
- xqxp+q+1+C
- −xqxp+q+1+C
- xpxp+q+1+C
Q. The value of √2∫sinxdxsin(x−π4) is
(where C is constant of integration)
(where C is constant of integration)
Q. ∫sin(tan−1√x) dx (x≥0) is
- √x2+x−12ln{(x+12)+√x2+x}+c
- 2√x2+x−12ln{(x+12)+√x2+x}+c
- √x2+x−ln{(x+12)+√x2+x}+c
- √x2+x+ln{(x+12)+√x2+x}+c
Q. If the value of ∫dxcos(3x−2)⋅cos(3x+5)
is f(x)asinb+C, then which of the following is/are true
(where C is constant of integration)
is f(x)asinb+C, then which of the following is/are true
(where C is constant of integration)
Q.
∫2 sin x(3+sin 2x)dx is equal to
12 ln ∣∣2+sin x−cos x2−sin x+cos x∣∣−1√2tan−1(sin x+cos x√2)+C
12 ln ∣∣2+sin x−cos x2−sin x+cos x∣∣−12√2tan−1(sin x+cos x√2)+C
14 ln ∣∣2+sin x−cos x2−sin x+cos x∣∣−1√2tan−1(sin x+cos x√2)+C
None of these
Q.
If and then is equals to ?
Q. If f(x)=√x, g(x)=ex−1, and∫fog(x)dx=Afog(x)+Btan−1(fog(x))+C, then A + B is equal to
- 1
- 2
- 3
- \N
Q. ∫√5+x10x16dx=
- −175(1+5x10)+c
- −150(1+5x10)3/2+c
- −175(1+5x10)3/2+c
- −175(1+5x10)5/2+c
Q. The equation of a curve passing through origin is given by y=∫x3 cos x4 dx. If the equation of the curve is written in the form x = g(y), then
- g(y)=3√sin−1(4y)
- g(y)=√sin−1(4y)
- g(y)=4√sin−1(4y)
- None of these
Q.
equals
Q. How many of the following statements are correct?
∫tanxdx=ln|(secx)|+c∫cotxdx=ln|(sinx)|+c∫secxdx=ln|(tanx)|+c∫cosec(x)dx=ln|(cotx)|+c
___
∫tanxdx=ln|(secx)|+c∫cotxdx=ln|(sinx)|+c∫secxdx=ln|(tanx)|+c∫cosec(x)dx=ln|(cotx)|+c
Q. The intergral ∫sec2x(secx+tanx)92dx equal (for some arbitrary constant k)
−1(secx+tanx)112{111−17(secx+tanx)2}+K
- 1(secx+tanx)112{111−17(secx+tanx)2}+k
- −1(secx+tanx)112{111+17(secx+tanx)2}+k
- 1(sexx+tanx)112{111+17(secx+tanx)2}+k
Q. The integral π/3∫π/6sec2/3x cosec4/3x dx is equal to :
- 35/3−31/3
- 34/3−31/3
- 35/6−32/3
- 37/6−35/6
Q. If f(x)=√x, g(x)=ex−1, and ∫fog(x) dx=Afog(x)+B tan−1(fog(x))+C, then A+B is equal to
Q. ∫[x+√a2+x2]n√a2+x2 dx (n≠0)=
- 1n+1(x+√a2+x2)n+1+c
- 1n.(x+√a2+x2)n+c
- (x+√a2+x2)n+c
- 1n(x+√a2+x2)n+c
Q. If ∫x5e−x2dx=g(x)e−x2+c, where c is a constant of integration, then g(−1) is equal to :
- −52
- −1
- −12
- 1
Q. The integral ∫e3loge2x+5e2loge2xe4logex+5e3logex−7e2logex dx, x>0, is equal to :
(where c is a constant of integration)
(where c is a constant of integration)
- loge|x2+5x−7|+c
- 14loge|x2+5x−7|+c
- 4loge|x2+5x−7|+c
- loge√x2+5x−7+c
Q. If ∫√x2+11−x2dx=1√2f(x)−g(x)+C, where C is a constant of integration, then
- f(x)=ln∣∣∣√1+x2+√2x√1+x2−√2x∣∣∣
- g(x)=ln|x−√1+x2|
- f(x)=ln∣∣∣√1+x2−√2x√1+x2+√2x∣∣∣
- g(x)=ln|x+√1+x2|
Q. ∫secx(1+tanx)dx(e−x+secx)=f(x)+c.
If f(0)=ln(2), then f(π4) is
If f(0)=ln(2), then f(π4) is
- ln(1+√2eπ/4)
- ln√2
- ln (2√2)
- ln(eπ/4√2+1)
Q. The value of ∫ex+9cosx−2 sinx+7ex+7sinx+11cosx+14 dx is
(where c is the constant of integration)
(where c is the constant of integration)
- 12 (x+ln (ex+7sinx+11cosx+14))+c
- 12 (x−ln (ex+7sinx+11cosx+14))+c
- x+12 ln (ex+7sinx+11cosx+14))+c
- x−12 ln (ex+7sinx+11cosx+14))+c
Q. ∫dx(3+4x2)√(4−3x2)=
- 1√75tan−1(5x3√4−3x)+c
- 1√20tan−1(5x3√4−3x)+c
- 15√3tan−1(5x√12−9x2)+c
- 15√3tan−1(5x√12−9x2)+c
Q. Evaluate ∫sin−1√x−cos−1√xsin−1√x+cos−1√x dx
- 1π[√x−x2−(1−2x)cos−1√x]−x+c
- 2π[√x−x2−(1−2x)sin−1√x]−x+c
- 2π[√x−x2−sin−1√x]−x+c
- 2π[√x−x2−(1−2x)sin−1x]−x+c
Q. The value of the integral ∫cos3x+cos5xsin2x+sin4x dx is
- sin x−6tan−1(sin x)+c
- sin x−2(sin x)−1+c
- sin x−2(sin x)−1−6tan−1(sin x)+c
- sin x−2(sin x)−1+5tan−1(sin x)+c
Q. ∫f(x)dx=ψ(x), then ∫x5f(x3)dx is equal to
- 13[x3ψ(x3)−∫x2ψ(x3)dx]+c
- 13x3ψ(x3)−∫x3ψ(x3)dx+c
- 13x3ψ(x3)−∫x2ψ(x3)dx+c
- 13[x3ψ(x3)−∫x3ψ(x3)dx]+c
Q. The value of the integral ∫(x2−1)dxx3(√2x4−2x2+1) is:
- 2√2−2x2+1x4+c
- 2√2+2x2+1x4+c
- 12√2−2x2+1x4+c
- None of these