Integration of Piecewise Continuous Functions
Trending Questions
Q.
If , then the value of is
Q.
Evaluate the following limit:
limr→1 πr2
Q. 19. The minimum value of f (x)=|x-3|+|2+x|+|5-x| is
Q. If x is positive, the sum to infinity of the series
(a) 1/2
(b) 3/4
(c) 1
(d) none of these
(a) 1/2
(b) 3/4
(c) 1
(d) none of these
Q. The value of α for which 4α2∫−1e−α|x|dx=5, is :
- loge2
- loge√2
- loge(43)
- loge(32)
Q. Evaluate following limits
limX→π22−cosx−1x(x−π2)
limX→π22−cosx−1x(x−π2)
Q. The value of integral ∫ex(2tanx1+tanx+cot2(x+π4))dx is equal to, where C is constant of integration
- extan(x−π4)+C
- extan(π4−x)+C
- extan(x−3π4)+C
- extan(3π4−x)+C
Q.
∫π20√cot x√cot x+√tan xdx= [MP PET 1990, 95; IIT 1983; MNR 1990]
- π
- π2
- π4
- π3
Q. If for a real number y, [y] is the greatest integer less than or equal to y, then value of the integral 3π2∫π2[2 sinx] dx, is
- −π
- 0
- −π2
- π2
Q. If f(x)=∫10f(xt)dt, where f(x) is a continuos function such that f(1)=2, then
- f(x) is a periodic function
- f(4)=2
- f(x) is an even function
- f(4)=5
Q. 7. | |x-2|-3|>1 then x belong to
Q. If [.] denotes the greatest function, then answer the following by appropriately matching the lists based on the information given in Column I and Column II
Column IColumn IIa. 1∫−1[x+[x+[x]]] dxp. 3b. 5∫2([x]+[−x]) dxq. 5c. 3∫−1sgn (x−[x]) dxr. 4d. 25π/4∫0((tan6(x−[x])+tan4(x−[x])) dxs. −3
Column IColumn IIa. 1∫−1[x+[x+[x]]] dxp. 3b. 5∫2([x]+[−x]) dxq. 5c. 3∫−1sgn (x−[x]) dxr. 4d. 25π/4∫0((tan6(x−[x])+tan4(x−[x])) dxs. −3
- (a)→(s), (b)→(q), (c)→(r), (d)→(s)
- (a)→(s), (b)→(r), (c)→(r), (d)→(q)
- (a)→(s), (b)→(s), (c)→(r), (d)→(q)
- (a)→(q), (b)→(s), (c)→(r), (d)→(p)
Q. The value of definite integral ∫2−1(x3−x∣∣dx is
- 2
- 3
- 134
- 114
Q.
∫20([x]2−[x2])dx is equal to
−4+√3+√2
4+√3−√2
4+2√3+√2
None of these
Q. The value of 3/2∫−1|xsinπx| dx=kπ+1πm, then k+m=
Q. ∫π−π2x(1+sinx)1+cos2xdx=
- π24
- π2
- 0
- π2