Integration of Trigonometric Functions
Trending Questions
Q. The value of the integral ∫x4+1x6+1dx is
(C is a constant of integration)
(C is a constant of integration)
- tan−1x+3tan−1x3+C
- 13tan−1x+tan−1x3+C
- 13tan−1x+3tan−1x3+C
- tan−1x+13tan−1x3+C
Q. ∫x2+cos2xx2+1 cosec2x dx is equal to
- cotx−cot−1x+c
- c−cotx+cot−1x
- tan−1x− cosec xsecx+c
- −elogtan−1x−cotx+c
Q. ∫dxsin4x+cos4 x is equal to
- 1√2tan−1(1√2tan 2x)+C
- √2tan−1(1√2tan 2x)+C
- 1√2tan−1(1√2cot 2x)+C
- None of these
Q. If ∫x4+1x6+1dx=tan−1f(x)−23tan−1g(x)+c, where c is an arbitrary constant, then
- both f(x) and g(x) are odd functions
- both f(x) and g(x) are even functions
- f(x)=g(x) has no real roots
- ∫f(x)g(x)dx=−1x+13x3+d, where d is an arbitrary constant.
Q.
Solve the given limit problem .
is equal to
is equal to
is equal to
Q.
Prove x=nπ2 or x=(mπ2+3π8), where m, n∈I
Q. If θ1 and θ2 be respectively the smallest and the largest values of θ in (0, 2π)−{π} which satisfy the equation, 2cot2θ−5sinθ+4=0, then θ2∫θ1cos23θ dθ is equal to :
- 2π3
- π3
- π3+16
- π9
Q. If Φ(x)=∫dxsin12x cos72x, then Φ(π4)−Φ(0)=
- 125
- 95
- 65
- \N
Q. The value of integral ∫√x−2x−3dx is equal to
(Where C is integration constant)
(Where C is integration constant)
- −√(3−x)(2−x)+ln|√3−x+√2−x|+C
- 12√(3−x)(2−x)−12ln|√3−x+√2−x|+C
- −12√(3−x)(2−x)−ln|√3−x+√2−x|+C
- −12√(3−x)(2−x)−12ln|√3−x+√2−x|+C
Q.
∫12+3 sinxdx
2√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
12√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
3√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
1√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
Q. ∫dx4+5sin2xdx is equal to.
16tan−1(3cotx2)+C
16tan−1(3tanx2)+C
16cot−1(3cotx2)+C
16cot−1(3tanx2)+C
Q. ∫x+sin x1+cos xdx=
- log|1+cos x|+C
- x tan x2+C
- −log|1+cos x|+C
- x cot(x2)+C
Q. STATEMENT - 1 : cos15∘=√3+12√2
STATEMENT - 2 : cos(A−B)=cosAcosB+sinAsinB
STATEMENT - 2 : cos(A−B)=cosAcosB+sinAsinB
- Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1
- Statement - 1 is True, Statement - 2 is False
- Statement - 1 is False, Statement - 2 is True
- Statement - 1 is True, Statement - 2 is True : Statement 2 is NOT a correct explanation for Statement - 1
Q. Evaluate ∫1√3sinx+cosx dx.
- 12log∣∣∣tan(x2+π12)∣∣∣+c
- 12log∣∣∣tan(x2+π8)∣∣∣+c
- 13log∣∣∣tan(x2+π12)∣∣∣+c
- none of these
Q. If ∫cos 8x+1tan 2x−cot 2xdx=a cos 8x+C, then
- a=−116
- a=18
- a=116
- a=−18
Q. If ∫xcotx+1√cosec2x−x2dx=f(x)+c, where limx→0+f(x)=0 and cosec x>0. (where c is a constant of integration), then which of the following is/are incorrect
- f(1)=1
- limx→0f(x)|x|tanx does not exist.
- f(1)=π2−1
- f(x) is periodic with a period 2π
Q. If ∫√1+sinxf(x) dx=23(1+sinx)3/2+c, then f(x) equals
- cosx
- sinx
- tanx
- 1
Q. ∫cos4xdxsin3x(sin5x+cos5x)35=−12(1+cotAx)B+C then AB=
- 1
- 2
- 12
- None of these
Q. If I=∫(secx−sinxtanx)dx, then the value of I is
(where C is constant of integration)
(where C is constant of integration)
Q. If f(x)=∫ex(21−tanx+tan2(x+π4)) dx, where f(3π4)=0. Then the value of ln(f(π)) is
Q. If ∫√1+cosec x dx=f(x)+C, where C is a constant of integration, then f(x) is equal to
- cos−1(1−2sinx)
- sin−1(1−2sinx)
- −2sin−1(1−2sinx)
- cos−1(1+2sinx)