Odd Extension of a Function
Trending Questions
Q. Solve the following equations:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Q. If f(x) = cos (log x), then the value of f(x2) f(y2) −is
(a) −2
(b) −1
(c) 1/2
(d) None of these
(a) −2
(b) −1
(c) 1/2
(d) None of these
Q. The solution of the equation lies in the interval
(a)
(b)
(c)
(d) ā
(a)
(b)
(c)
(d) ā
Q. The number of values of x in the interval [0, 5 π] satisfying the equation is
(a) 0
(b) 5
(c) 6
(d) 10
(a) 0
(b) 5
(c) 6
(d) 10
Q.
If f(x)=(x3+x2, for 0≤x≤2x+2, for 2≤x≤4
then the odd extension of f(x) would be -
f(x)=(x3+x2, for −2≤x≤0x+2, for −4≤x≤−2
-
f(x)=(−x3+x2, for −2≤x≤0−x+2, for −4≤x≤−2
f(x)=(x3−x2, for −2≤x≤0x−2, for −4≤x≤−2- None of these
Q. If f(x) = cos (log x), then value ofis
(a) 1
(b) −1
(c) 0
(d) ±1
(a) 1
(b) −1
(c) 0
(d) ±1
Q.
Odd extension is obtained by replacing x by (-x) in the equation of f(x).
True
False
Q.
The number of solution(s) of the equationsin(-1)2x - cos(-1)x + tan(-1)2x = pi/2is
(1) Zero (2) One(3) Two (4) Infinitely many