Parametric Differentiation
Trending Questions
Q. the value of theta for which sin theta = cos theta where , 180<theta<360
Q.
Prove that:
sin 3x+ sin 2x - sin x = 4 sin x cosx2cos3x2
Q.
, then at , the value of
None of these
Q. Find the derivative of the following function:
f(x)= ax+b(px2+qx+r)
f(x)= ax+b(px2+qx+r)
Q. Express cos 6 theta in terms of cos theta
Q. If y=√(a−x)(x−b)−(a−b)tan−1√(a−xx−b), then dydx is equal to
- √(a−x)(x−b)
- 1√(a−x)(x−b)
- √(a−xx−b)
- √(x−ba−x)
Q. If x=secθ−cosθ, y=sec10θ−cos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to
- 1100
- 1
- 10
- 100
Q. If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of .
Q. If and , then
(a)
(b)
(c) 1
(d) none of these
(a)
(b)
(c) 1
(d) none of these
Q. If tan θ = , then sec θ − tan θ is equal to
(a)
(b)
(c) 2x
(d)
(a)
(b)
(c) 2x
(d)
Q. Prove that:
Q. Write the interval in which the value of 5 cos θ + 3 cos lies.
Q. If x=eθ(sinθ+cosθ) and y=eθ(sinθ –cosθ), where θ is a real parameter, then d2ydx2 at θ=π6 is
- √32
- 43√3e−π/6
- 83√3e−π/6
- 43
Q. If x=2sinθ−sin2θ and y=2cosθ−cos2θ, θ ∈[0, 2π], then d2ydx2 at θ=π is :
- −38
- 34
- 32
- −34
- None of these
Q. If x = a cos θ, y=b sin θ, then d3ydx3 is equal to
- (−3ba3)cosec4θ cot4θ
- (3ba3)cosec4θ cotθ
- (−3ba3)cosec4θ cotθ
- None of the above
Q. If , show that f(tan θ) = sin 2θ.
Q. In prove that .
Q. If , then tan θ =
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q.
what is the value of cot 660 degrees?
Q. If prove that .
Q. If t=(1−cosθ)(1+cosθ) and s=2tan(θ2), then find dtds at θ=π2
- 2
- 12
- \N
- 1
Q. Given the parametric equations x=f(t), y=g(t), then d2ydx2 equals
- d2ydt2.dxdt−dydtd2xdt2(dxdt)2
- dxdtd2ydt2−d2xdt2dydt(dxdt)3
- d2ydt2d2xdt2
- d2ydt2.dxdt−dydtd2xdt2(dxdt)
Q. If sec , then sec θ + tan θ =
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q. Prove that:
Q. If ex=√1+t−√1−t√1+t+√1−t and tany2=√1−t1+t then dydx at t=12 is
- 12
- −12
- 0
- None of these