Parametric Equation of a Circle
Trending Questions
The line segment joining (5, 0) and (10 cos t, 10 sin t) is divided internally in the ratio 2:3 at P. If t varies, then the locus of P is
a circle
a hyperbola
an ellipse
a straight line
- −2+4cosθ
- 4+4cosθ
- 1+4cosθ
- −2+4sinθ
If the coordinates of a point be given by the equation x=a(1−cosθ), y=asinθ, then the locus of the point will be
A straight line
A circle
A parabola
An ellipse
If cos (x-y) cos(z-t) = cos(x+y) cos (z+t), then tanx tany + tanz tant is equal to
1
-1
2
0
Find the parametric equation of the circle x2 + y2 − 2x + 4y − 11 = 0
x=−2 + 4 cosθ and y=+4 + 4 cosθ
x=−2 + 4 cosθ and y=+4 + 4 cosθ
x=−1 + 4 cosθ and y=+2 + 4 sinθ
x=1 + 4 cosθ and y=−2 + 4 sinθ
(a) the eccentricity is 1/2
(b) the latus-rectum is 3/2
(c) a focus is
(d) a directrix is x =
What is the equation of a curve given by the parametric form x=9+6 sec θ;y= −2−4 tanθ.
^2}{36}-\frac{(y-2)^2}{16}=1\)
^2}{36}-\frac{(y+2)^2}{16}=1\)
^2}{81}-\frac{(y+4)^2}{4}=1\)
^2}{81}-\frac{(y-4)^2}{4}=1\)
(a) 2
(b) 4
(c) 8
(d) 16
The locus of the mid point of the intersect of the variable line x cos a+ y sin a = p ( p is a constant) between the co-ordinate axes is
1x2+1y2=1p2
1x2+1y2=1p2
1x2+1y2=14p2
None of these
How do you convert to rectangular form?