Parametric Form of Tangent: Hyperbola
Trending Questions
Q.
The locus of a point P(α, β) moving under the condition that the line y = αx + β is a tangent to the hyperbola x2a2−y2b2=1.
a parabola
a circle
an ellipse
a hyperbola
Q.
If tangents to the parabola y2=4x intersect the hyperbola at A & B, then find the locus of point of intersection of tangent at A and B.
4y2 + 81x = 0
y2 + 81x = 0
4y2 + 16x = 0
y2 + 16x = 0
Q. The value(s) of m, for which the line y=mx+25√33 , is a normal to the conic x216−y29=1 is/are
- √32
- −2√3
- −√32
- 2√3
Q. If the normal at P to the hyperbola x2−y2=4 meets the axes in G and g and C is centre of the hyperbola, then
- PG=PC
- Pg=PC
- PG=Pg
- Gg=2PC
Q. If the line 2x+√6y=2 touches the hyperbola x2−2y2=4 then the point of contact is
(IIT JEE 2004)
(IIT JEE 2004)
- (−2, √6)
- (−5, 2√6)
- (12, 1√6)
- (4, −√6)
Q.
Let P(a secθ, b tanθ) and Q(a secϕ, b tanϕ), where θ+ϕ=π2, be two points on the hyperbola x2a2−y2b2=1.
If (h, k) is the point of the intersection of the normals at P and Q, then k is equal to
a2+b2a
−(a2+b2a)
a2+b2b
−(a2+b2b)
Q. Line inclination with
Positive x−directionSlope of line1.0op. 02.90oq. −√33.120or. −1√34.150os.Not defined
Positive x−directionSlope of line1.0op. 02.90oq. −√33.120or. −1√34.150os.Not defined
1 - p 2 - s 3 - q 4 - r
1 - p 2 - s 3 - r 4 - q
1 - s 2 - p 3 - q 4 - r
1 - p 2 - q 3 - r 4 - s