Principal Solution of Trigonometric Equation
Trending Questions
Q. The principal solution of the equation sinx=12 that is less than π2 is
- π3
- π3
- π6
Q. Let f:R→R be defined as f(x+y)+f(x−y)=2f(x)f(y), f(12)=−1. Then the value of 20∑k=11sin(k)sin(k+f(k)) is equal to
- cosec2(21)cos(20)cos(2)
- sec2(21)sin(20)sin(2)
- sec2(1)sec(21)cos(20)
- cosec2(1) cosec(21)sin(20)
Q.
A conic section is defined by the equations x = - 1 + sect y = 2 + z tant. The coordinates of the foci are,
~and~ (-1+\sqrt{10}, 2)\)
~and~ (-1+\sqrt{8}, 2)\)
~and~ (-1, 2+\sqrt{8})\)
~and~ (-1, 2+\sqrt{10})\)
Q. The principal solution of a trigonometric equation lies in the interval
- -π2, π2
- (−π, π)
- [0, 2π)
Q.
Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular x-axis.
(i) x−√3y+8=0, (ii) y - 2 = 0, (iii) x - y = 4
Q. If 0≤x<π2, then the number of values of x for which sinx−sin2x+sin3x=0, is :
- 3
- 4
- 2
- 1
Q.
If (cosθ+isinθ)(cos2θ+isin2θ)
(cosnθ+isinnθ)=1, then the value of θ is