Product of Trigonometric Ratios in Terms of Their Sum
Trending Questions
If cos3x.sin 2x=∑nr=0arsin(rx), ∀ x∈R, then choose the correct option(s).
n=5, a1=12
n=5, a1=14
n=5, a3=18
n=5, a5=14
Prove x=(2nπ±2π3)orx=mπ+(−1)m.7π6, where m, n∈I
x1+x2+y1+y2+z1+z2=2√(1+x2)(1+y2)(1+z2)
Statement 2: In a triangle ABC, sin2A+sin2B+sin2C=4sinAsinBsinC
- Both the statements are TRUE and Statement 2 is the correct explanation of Statement 1
- Both the statements are TRUE but Statement 2 is NOT the correct explanation of Statement 1
- Statement 1 is TRUE and Statement 2 is FALSE
- Statement 1 is FALSE and Statement 2 is TRUE
If k=sinπ18.sin5π18.sin7π18 then the numerical value of k is
14
18
116
None of these
sin 20∘sin 40∘sin 60∘sin 80∘=
-3/16
5/16
3/16
-5/16
If k=sinπ18.sin5π18.sin7π18 then the numerical value of k is
If α + β - γ = π, then sin2α + sin2β - sin2γ =
2 sin sin cos.
2 cos cos cos.
2 sin sin sin.
2 cos cos sin.
If α+β−γ=π then sin2α+sin2β−sin2γ is equal to
2 sin α sin β cos γ
2 sin α sin β sin γ
2 cos α sin β cos γ
Always 0
- sin 4A
- cos 4A
- tan 4A
- cot 4A
Prove that sin x +sin 3x+sin 5x+sin 7x=4 cos x cos 2x sin 4x.
cot4x(sin5x+sin3x)=cotx(sin5x−sin3x)
- n=5, a1=12
- n=5, a1=14
- n=5, a2=18
- n=5, a2=116
sin 20∘sin 40∘sin 60∘sin 80∘=
-316
516
316
-516
- 14
- 12
- 116
- 164
If cos3x.sin2x=∑nx=0arsin(πx), ∀x∈R, then
n=5, a1=12
n=5, a1=14
n=5, a3=18
n=5, a5=14
sin 20∘sin 40∘sin 60∘sin 80∘=
-3/16
5/16
-5/16
3/16
The value of
sinπ14 sin3π14 sin5π14 sin7π14 sin9π14 sin11π14 sin13π14 is equal to
18
116
132
164
- 11024
- 12
- 1512
- 1256