Properties Derived from Trigonometric Identities
Trending Questions
Q.
If , then the general values of are
Q.
The maximum value of in is
Q. If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.
Q.
Prove the following:
cos 4x+ cos 3x + cos 2xsin 4x + sin 3x + sin 2x=cot 3x
Q.
If , then is equal to:
Q. tan−113+tan−129+tan−1433+⋯ to ∞=
- π4
- π2
- π
- None
Q. If sec x + tan x = k, cos x =
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q. The value of the expression tan−1(√22)+sin−1(√55)−cos−1(√1010), is
- cot−1(1+√21−√2)
- cot−1(√2+1√2−1)
- −π+cot−1(1+√21−√2)
- π−cot−1(1−√21+√2)
Q.
If x1, x2, x3, x4 are roots of the equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0 then tan−1x1+tan−1x2+tan−1x3+tan−1x4=
β
π2−β
π−β
−β
Q. If then
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q. The number of values of x in [0, 2π] that satisfy the equation
(a) 1
(b) 2
(c) 3
(d) 4
(a) 1
(b) 2
(c) 3
(d) 4
Q. 11. In a triangle ABC, prove that (a) cos(A+B)+cos C=0 (b) tan (A+B)÷ 2= cot C÷ 2
Q. The value of x for which
tan−1x + sin−1x = tan−12x is
tan−1x + sin−1x = tan−12x is
Q. If prove that .
Q. Solve the following equations:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
Q. Prove that:
(i) cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
(iii) sin A + sin 2A + sin 4A + sin 5A = 4 cos cos sin 3A
(iv) sin 3A + sin 2A − sin A = 4 sin A cos cos
(v) cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −
(vi)
(vii)
(i) cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
(iii) sin A + sin 2A + sin 4A + sin 5A = 4 cos cos sin 3A
(iv) sin 3A + sin 2A − sin A = 4 sin A cos cos
(v) cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −
(vi)
(vii)
Q. Show that:
Q. If and , show that cos 2A = sin 4B
Q. The smallest value of x satisfying the equation is
(a)
(b)
(c)
(d)
(a)
(b)
(c)
(d)
Q. Prove the:
Q. If tan−1(x−1)+tan−1(x+1)+tan−1x=tan−13x, then in the interval [−1, 1], then x has :
- one value
- 2 values
- 3 values
- No value
Q. Solve the following equations:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Q. If , prove that
(i)
(ii)
(iii)
(i)
(ii)
(iii)
Q. 3tan−1(12)+2tan−1(15)+sin−1(14265√5)=
- 0
- π
- 3π2
- 2π
Q. If in the triangle ABC, ∠C=π2 and sin−1x=sin−1(axc)+sin−1(bxc), where a, b, c are the sides of triangle, then total number of different values of x’ are:
- 2
- 3
- 4
- None
Q.
If sin−113+sin−123=sin−1 x, then x is equal to
[Roorkee 1995]
- \N
- √5−4√29
√5+4√29
x2
Q. If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
(a) 0
(b) −1
(c) 1
(d) None of these
(a) 0
(b) −1
(c) 1
(d) None of these
Q. If then
(a)
(b) 1
(c) 1/2
(d) None of these
(a)
(b) 1
(c) 1/2
(d) None of these