Sandwich Theorem
Trending Questions
Q. 19.How to find the value of sin (18) and cos (75). Angles are in degree.
Q.
For the function
For at least one in the interval
For all in the interval
is strictly increasing in the interval
Q.
Evaluate limx→0(32x−123x−1)
Q. 30. Prove that , sin20.sin40.sin60.sin80 = 3/16 . Thanks.
Q. If I=98∑k=1k+1∫kk+1x(x+1)dx, then
- I>loge99
- I<loge99
- I<4950
- I>4950
Q. 12+(12+22)+(12+22+32)+....
Q.
If
f(x)={xsin1xx≠00x=0,
then limx→0f(x)=
0
-1
1
does not exist
Q.
Evaluate:
None of these
Q.
Evaluate limx→1x15−1x10−1
Q. limx→∞√x+sinxx−cosx=
- does not exist
Q.
The value of limx→0([100xsin x]+[99sin xx]), where [.] denotes the greatest integer function, is
199
197
198
Does not exist
Q. limx→∞√x+sinxx−cosx=
- does not exist
Q. Write the value of
Q. For αϵR (the set of all real numbers), a≠−1,
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
- 5
- 7
- −152
- −172
Q. For αϵR (the set of all real numbers), a≠−1,
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
- 5
- 7
- −152
- −172
Q.
The value of limx→∞x+cos xx+sin xis
0
-1
1
2
Q. lf f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩−x−π2, x≤−π2−cosx, −π2<x≤0x−1, 0<x≤1lnx, x>1 then
- f(x) ls contlnuous at x=−π2
- f(x) is differentiable at x=1
- f(x) is differentiable at x=−32
- f(x) is not differentiable at x=0
Q. limx→0(x+1)5−1x
Q. Find the set of values of X satisfying 2 sin^2x-3sinx+1>=0
Q. Prove that for all values of x
Q.
If
f(x)={xsin1xx≠00x=0,
then limx→0f(x)=
1
0
-1
does not exist