Singular and Non Singualar Matrices
Trending Questions
Q. If x, y, z are three real numbers and A=⎡⎢⎣1cos(x−y)cos(x−z)cos(y−x)1cos(y−z)cos(z−x)cos(z−y)1⎤⎥⎦
then
A is
then
A is
- symmetric matrix
- non-singular matrix
- not invertibe matrix
- orthogonal matrix
Q.
If matrix A=[aij]3×3, matrix B=[bij]3×3 where aij+aji=0 and bij−bji=0, then |A4.B3| is
skew-symmetric matrix
singular
symmetric
zero matrix
Q. If x, y, z are three real numbers and A=⎡⎢⎣1cos(x−y)cos(x−z)cos(y−x)1cos(y−z)cos(z−x)cos(z−y)1⎤⎥⎦
then
A is
then
A is
- symmetric matrix
- non-singular matrix
- not invertibe matrix
- orthogonal matrix
Q. If
A=⎡⎢⎣ete−tcoste−tsintet−e−tcost−e−tsint−e−tsint+e−tcostet2e−tsint−2e−tcost⎤⎥⎦,
then A is :
A=⎡⎢⎣ete−tcoste−tsintet−e−tcost−e−tsint−e−tsint+e−tcostet2e−tsint−2e−tcost⎤⎥⎦,
then A is :
- invertible only if t=π.
- invertible only if t=π2.
- invertible for all t∈R.
- not invertible for any t∈R.