Standard Equation of Ellipse
Trending Questions
What is the length of latusrectum of the ellipse 16x2+y2=16?
circles are drawn having segments of tangents at A and B in between tangents at the two ends of major axis of ellipse as diameter, then the length of common chord of the circles is
- 8
- 6
- 10
If the line x+2y+4=0 cutting the ellipse x2a2+y2b2=1 in points whose eccentric angles are 30∘ and 60∘ subtends a right angle at the origin then its equation is
x28+y24=1
x216+y24=1
x24+y216=1
none of these
(a) 3/5
(b) 1/3
(c) 2/5
(d) 1/5
- (2, √2)
- (1, 2√2)
- (√2, 2)
- (2, 2√2)
- x210+y25√3=1
- x225+y2100=1
- x275+y2100=1
- x210+y225=1
- (−∞, 4)
- (4, 6)
- (6, −∞)
- [4, 6]
Given standard equation of ellipse,
x2a2+y2b2=1, a>b,
with eccentricity e.
Match the following
a)Major axisi)2a(1−e2)b)Minor axisii)y=0c)Double ordinateiii)x=0d)Latus Rectum lengthiv)x=−aev)√1−b2a2
a=ii, b=iii, c=iii, d=i
a=v, b=ii, c=vi, d=i
a=ii, b=iv, c=iii, d=v
a=iii, b=ii, c=vi, d=i
- x2+y2−6y−7=0
- x2+y2−6y+7=0
- x2+y2−6y−5=0
- x2+y2−6y+5=0
- (1, ∞)
- (−∞, 1)
- (−∞, −1)
- (3, ∞)
Given standard equation of ellipse,
x2a2+y2b2=1, a>b,
with eccentricity e
Match the following
a) Focusi)(ae, 0)b) Directrixii)(a, 0)c) Eccentricityiii)x=aed) Verticesiv)(−ae, 0)v)x=−aevi)√1−b2a2
a=i, iv, b=ii, v, c=vi, d=iii
a=i, b=ii, v, c=vi, d=iii
a=i, iv, b=iii, v, c=vi, d=ii
a=i, b=iii, v, c=vi, d=ii
- 12
- −12
- 9
- −9
- 4
- 6
- Can’t be found
- 2
- (±√7, ±94)
- (±√9, ±165)
- (±4, ±254)
- (±6, ±45)