Sum of Binomial Coefficients with Alternate Signs
Trending Questions
Q. Sum of the series 3C1−4C2+5C3−6C4+⋯ upto n terms is (where Cr= nCr)
- −1
- 2
- −2
- 1
Q. If C0, C1, C2, …, Cn denote the binomial coefficients respectively in (1+x)2020, then
- C0−C12+C23−C34+…+C20202021=12021
- C0+C12+C23+C34+…+C20202021=22020−12021
- C0+C23+C45+…+C20202021=220202021
- C12+C34+…+C19992020=220202021
Q. The value of 30C0− 30C12+ 30C23−⋯⋯+ 30C3031 is
- 130
- 3031
- 3130
- 131
Q. The sum of co-efficients of all even degree terms in x in the expansion of (x+√x3−1)6+(x−√x3−1)6, (x>1) is equal to:
- 24
- 26
- 29
- 32
Q. The value of 50∑r=0(−1)r 50Crr+2 is equal to
- 150×51
- 152×50
- 152×51
- 150×53
Q.
Let S1 = nC0 + nC1 + nC2.............nCn and S2 = nC0 - nC1 + nC2 ..............+ (−1)n nCn
Find the value of S1S1+S2 is
Q.
The sum of the series 20C0 - 20C1 + 20C2 - 20C3 ...............+ 20C10 is
−20C10
1220C10
0
20C10