Trigonometric Ratios of Common Angles
Trending Questions
Q.
is equal to
Q. In triangle ABC, right angled at B, if one angle is 45∘, find the value of sin A, cosC, cot A and tan C respectively.
- 2, 2, √2, √2
- 1/√2, 1/√2, 1, 1
- 1, 1, 1/√3, 1/√3
- 1/√3, 1/√3, 1, 1
Q.
What are the trigonometric ratios ?
Q. If P=sin300∘⋅tan330∘⋅sec420∘tan135∘⋅sin210∘⋅sec315∘ and Q=sec480∘⋅cosec 570∘⋅tan330∘sin600∘⋅cos660∘⋅cot405∘, then the value of P and Q are respectively
- √2, −163
- √2, 163
- −2, 316
- √2, 316
Q.
In triangle ABC, right angled at B, if one angle is 45o, find the value of sin A, cos C, cot A and tan C respectively.
1, 1, 1/√3, 1/√3
2, 2, √2, √2
1/√2, 1/√2, 1, 1
1/√3, 1/√3, 1, 1
Q. In triangle ABC, right angled at B, Find the expressions of cos A , sin C, tan A and cot C.
- AB/AC , BC/AC, BC/AB , AB/BC
- BC/AC , AB/AC, BC/AB , BC/AB
- AB/AC , AB/AC, BC/AB , BC/AB
- BC/AC , BC/AC, AB/BC , BC/AB
Q. The numerical value of cosec θ[1−cosθsinθ+sinθ1−cosθ]−2cot2θ is
- 0
- 1
- 2
- 3
Q.
If cos A = √32, then tan 3A =
0
12
1
∞
Q. In triangle ABC, right angled at B, if one angle is 45∘, the values of sin A, cosC, cot A and tan C respectively are .
- 2, 2, √2, √2
- 1√2, 1√2, 1, 1
- 1, 1, 1√3, 1√3
- 1√3, 1√3, 1, 1
Q.
Trigonometric RatiosValues(i)tan60o(a)1√3(ii)cot30o(b)√3(iii)cosec30o(c)2(iv)sec30o(d)2√3
In an equilateral triangle ABC , match the following ratios to the values
Trigonometric RatiosValues(i)tan60o(a)1√3(ii)cot30o(b)√3(iii)cosec30o(c)2(iv)sec30o(d)2√3
(i) -a , (ii) - a , (iii) - c , (iv) - d
(i) -d , (ii) - a , (iii) - b , (iv) - d
(i) -a , (ii) - b , (iii) - d , (iv) - c
(i) -b , (ii) - b , (iii) - c , (iv) - d
Q. In an equilateral triangle ABC , match the following ratios to the values
Trigonometric ratiosValues(i) tan 60∘(a) 1√3(ii) cot 30∘(b)√3(iii) cosec 30∘(c) 2(iv) sec 30∘(d) 2√3
Trigonometric ratiosValues(i) tan 60∘(a) 1√3(ii) cot 30∘(b)√3(iii) cosec 30∘(c) 2(iv) sec 30∘(d) 2√3
- (i) -a , (ii) - b , (iii) - d , (iv) - c
- (i) -b , (ii) - a , (iii) - d , (iv) - c
- (i) -b , (ii) - b , (iii) - c , (iv) - d
- (i) -a , (ii) - b , (iii) - c , (iv) - d
Q. ABC is a triangular park with AB=AC=100 metres. A vertical tower is sitiuated at the mid-point of BC. If the angle of elevation of the top of the tower at A and B are cot−1(3√2) and cosec−1(2√2) respectively, then the height of the tower (in metres) is :
- 1003√3
- 25
- 20
- 10√5
Q.
How many of the following statements are correct?
Q. How do you find cos if sin=5/13 ?
Q. Prove that −2sinA2=−√1+sinA−√1−sinA ?
Q. In an equilateral triangle ABC , match the following Trigonometric ratios to the values
Trigonometric ratiosValues(i) tan 60∘(p) 1√3(ii) cot 30∘(q)2√3(iii) cosec 30∘(r) 2(iv) sec 30∘(s) √3
Trigonometric ratiosValues(i) tan 60∘(p) 1√3(ii) cot 30∘(q)2√3(iii) cosec 30∘(r) 2(iv) sec 30∘(s) √3
- (i) -b , (ii) - b , (iii) - c , (iv) - d
- (i) -a , (ii) - b , (iii) - c , (iv) - d
- (i) -a , (ii) - b , (iii) - d , (iv) - c
- (i) -b , (ii) - a , (iii) - d , (iv) - c
Q. In triangle ABC, right angled at B, Find the expressions of cos A , sin C, tan A and cot C.
AB/AC , BC/AC, BC/AB , AB/BC
BC/AC , AB/AC, BC/AB , BC/AB
AB/AC , AB/AC, BC/AB , BC/AB
BC/AC , BC/AC, AB/BC , BC/AB
Q. The value of the expression (1+cos2A)(1−sec2A)cotA(1+tanA)(1−cotA), when A=30∘ is
Q. The value of the expression (1+tanπ6)(1−cotπ6)(1+cosπ3)(1−secπ3) is
- 43√3
- √3
- 4√3
- 3√3
Q. From the top of a building 21 m high, the angle of elevation and depression of the top and the foot of another buillding are 30∘ and 45∘ respectively. The height of the second building is
- 21+7√3
- 21√3
- 21√3+7
- 7√3