Antiderivative
Trending Questions
Q. Find the integral ∫x+1x2+2x−4dx
- ln(x2+2x−4)+C
- 12ln(x2+2x)+C
- 12ln(x2+2x−4)+C
- 12ln(x+1)+C
Q. ∫2x(x−x−3)dx is equal to
- 2x33+2x+c
- 2x33−2x+c
- x33−2x+c
- x33+2x+c
Q. Evaluate: ∫(3e3x+e−x)dx
- e3x+e−x+C
- e3x−e−x+C
- e3x+e−2x+C
- 3e3x+e−x+C
Q. Evaluate: ∫(cos(x)−3x5)dx
- sinx+34x4+C
- sinx−34x4+C
- sinx+45x4+C
- sinx+35x5+C
Q.
Find the integral of the given function w.r.t x
y=cos(8x+6)+cosec2(7x+5)+6sec x tan x
Q. Find the integral ∫2xx2−4dx
- ln(2x)+C
- ex2−4+C
- ln(x2−4)+C
- ex2−42x+C
Q. Evaluate ∫exsinx dx
- −ex(cosx−sinx)
- −ex2(cosx−sinx)
- −ex2(cosx+sinx)
- −ex(cosx+sinx)
Q.
Find the integral of the given function w.r.t - x
y=sin2√x2√x
12x3+13sin 3x+c
12√x−14sin 2√x+c
12√x−14sin √x+c
None of these
Q. Evaluate ∫(x+1x)2dx
- x33−1x+x+c
- x33+1x+2x+c
- x33−1x+2x+c
- x33+1x+x+c
Q.
Find the integral of the given function w.r.t x
y=sin 6x+10sec2x−cosec xcot x
6cos 6x+20sec2xtan x+cosec xcot x+cosec3x+c
cos 6x+10tan x+cosec x+c
−cos(6x)6+10tan x−(cosec x)+c
−cosec 6x+10tan x+cosec x+c
Q. N(g) + O+(g) ---> N+(g) + O(g) is the above process spon†an eous?
Q. Evaluate ∫xexdx
- ex(x+1)
- ex(x−1)
- ex(x−1)
- ex(x+1)
Q.
Integrate the following w.r.t x:12x+3
ln |2x + 3| + c
ln|2x+3|2+c
ln(2x+3)2x+3+c
None of these
Q. ∫(sin x+x2) dx is equal to:
- 2x+cos x+C
- x23+cos x+C
- x33−cos x+C
- 2x−cos x+C
Q.
Find the integral of the given function w.r.t x
y=sin(8x)+x
−cos 8x8+x22+c
8 cos 8x8+1+c
cos 8x8+x22+c
cos 8x8+1+c
Q. how will i unders†an d that △ H of a given reaction is +ve or -ve?
Q. Evaluate ∫3−3x+6dx
- ln(−3x+6)
- −ln(−3x+6)
- −ln(−3x+6)3
- ln(−3x+6)3
Q. Evaluate:
i. ∫(sinx+cosx)dx
ii. ∫(3x2+4)dx
i. ∫(sinx+cosx)dx
ii. ∫(3x2+4)dx
- i.−cosx+sinx+C
ii.x3+4x+C - i.−cosx−sinx+C
ii.x3−2x+C - i.−cosx−sinx+C
ii.x3+2x+C - i.cosx+sinx+C
ii.x3−4x+C
Q. Evaluate ∫6−3x+6dx
- e−3x+62+C
- −2ln(−3x+6)+C
- −2e−3x+6+C
- ln(−3x+6)2+C
Q. Evaluate ∫x2sinx dx
- −x2cosx+2(xsinx+cosx)
- −x2cosx−2(xsinx+cosx)
- x2cosx+(2xsinx+cosx)
- x2cosx−(2xsinx−cosx)
Q. Evaluate ∫sec2(−3x+4)dx
- −tan(−3x+4)3+C
- tan(−3x+4)4+C
- tan(−3x+4)3+C
- −cot(−3x+4)4+C
Q. Evaluate: ∫(cos(x)+x2)dx
- sinx+x32+C
- sinx+x36+C
- sinx+x23+C
- sinx+x33+C
Q. Evaluate: ∫sin2xdx
- x2−sin2x4+C
- x2−sin2x2+C
- x4−sin2x4+C
- x2−sin2x3+C
Q. ∫(sec2x+e3x)dx is equals to
- secx+e3x3+C
- tanx+e3x3+C
- tanx+e3x+C
- secxtanx+e3x+C
Q. Evaluate the integral ∫π20sinx dx
- 0
- −1
- 1
- 2