Chain Rule of Differentiation
Trending Questions
Q.
What is the derivative of ?
Q. If y=sinx and x=3t, then dydt will be
- 9cosx
- cosx
- 3cos(3t)
- −cosx
Q. Differentiation of sinx2 w.r.t. x is
- cosx2
- 2xcosx2
- x2cos(x2)
- −cos2x
Q. Find the derivative of y=(x2+1)(x3+3).
- 5x4+3x2+x
- 4x4+3x2+6x
- 5x4+2x2+6x
- 5x4+3x2+6x
Q. Derivative of f(x)=exsin(√x) is
- ex.cos(√x)2√x+exsin(√x)
- ex.sec(√x)2√x−exsin(√x)
- ex.cos(√x)2√x+excos(√x)
- ex.sin(√x)2√x+excos(√x)
Q.
Multiply .
Q. Find the differentiation of a function represented by y=ex3 with respect to x.
- ex3.3x3
- ex2.3x2
- ex3×3x2
- ex3.3x
Q.
If , , then is
minimum at
maxima at
neither minima nor maxima at
None of the above
Q.
If , then is equal to
Q.
Find the derivative of y=√x2+1
none of these
Q.
What is the derivative of ?
Q. Find derivative of f(x)=esinx+lnx+8x
- cosxesinx+1x+8xlnx
- cosxesinx+1x+8xln8
- sinxesinx+1x+8xln8
- cosxecosx+1x+8xlnx
Q.
Find the derivative of y=√x2+1
x√x2+12
x√x2+1
12√x2+1
none of these
Q.
Multiply .
Q. Find the derivative of y with respect to x at x=1, where function y is expressed as y=√x3+1 .
- 12√2
- 3√2
- 3√2√5
- 32√2
Q.
Add the following:
Q. Find the differentiation of a function represented by y=ex3 with respect to x.
- ex3.3x3
- ex2.3x2
- ex3×3x2
- ex3.3x
Q. Derivative of f(x)=exsin(√x) is
- ex.cos(√x)2√x+exsin(√x)
- ex.sec(√x)2√x−exsin(√x)
- ex.cos(√x)2√x+excos(√x)
- ex.sin(√x)2√x+excos(√x)
Q. Derivative of f(x)=xsin(√x) is
- cos(√x)2√x+sin(√x)
- √x.cos(√x)2−sin(√x)
- √x.cos(√x)2+sin(√x)
- cos(√x)2√x−sin(√x)
Q. If y=sin(lnx), then dydx will be
- cos(lnx)x
- −sin(lnx)
- −cos(lnx)
- sinlnxx
Q. If y=sin5θ+cos8θ. Find dydθ.
- sin4θcos3θ+tanθ
- sin4θcos3θ+tan5θ
- sin2θcos3θ+tan5θ
- 5cosθsin4θ−8sinθcos7θ
Q.
How do you combine like terms for ?
Q. If y=tan[log(x2)], then dydx is -
- 2x sec2[log(x2)]
- 2 sec2[log(x2)]x
- x sec2[log(x2)]
- 1x2sec2[log(x2)]
Q.
Add the following: