Displacement in 2D Motion
Trending Questions
- S>|ΔX|
- S<|ΔX|
- S=|ΔX|
- S>|ΔX|2
(g=10 m/s2)
- 20 m/s, 5 m/s2
- 20√2 m/s, 10 m/s2
- 20√2 m/s, 0
- 20 m/s, 0
(i) Position vector →A(1)2^i+^j
(ii) Postion vector →B(2)3^i+3^j
(iii)Displacement →dAB(3)5^i+4^j
(iv)Position vector of point of
intersection of path 1 & path 2 (4)4^i+3^j
(i) - (2), (ii) - (3), (iii) - (1), (iv) - (4)
(i) - (3), (ii) - (1), (iii) - (2), (iv) - (4)
(i) - (1), (ii) - (2), (iii) - (3), (iv) - (4)
(i) - (4), (ii) - (1), (iii) - (3), (iv) - (2)
What are the initial position vector →ri and final position vector →rf, both in unit-vector notation? What is the x component of displacement Δ→r?
(i) |
Position vector →ri |
(x) |
5^i−3^j−1^k |
(ii) |
Postion vector →rf |
(y) |
−2^i−4^j+1^k |
(iii) |
x-component of displacement Δ→r |
(z) |
7^i+1^j−2^k |
(i) - (x); (ii) - (z); (iii) - (y)
(i) - (z); (ii) - (x); (iii) - (y)
(i) - (z); (ii) - (y); (iii) - (x)
(i) - (x); (ii) - (y); (iii) - (z)
- 1.26 m
- 1.13 m
- 0.86 m
- 1.384 m
(i) | Position vector →A | (1) | 2^i+^j |
(ii) | Postion vector →B | (2) | 3^i+3^j |
(iii) | Displacement →dAB | (3) | 5^i+4^j |
(iv) | Position vector of point of intersection of path 1 & path 2 |
(4) | 4^i+3^j |
(i) - (3), (ii) - (1), (iii) - (2), (iv) - (4)
(i) - (2), (ii) - (3), (iii) - (1), (iv) - (4)
(i) - (1), (ii) - (2), (iii) - (3), (iv) - (4)
(i) - (4), (ii) - (1), (iii) - (3), (iv) - (2)
(i) | Position vector →A | (1) | 2^i+^j |
(ii) | Postion vector →B | (2) | 3^i+3^j |
(iii) | Displacement →dAB | (3) | 5^i+4^j |
(iv) | Position vector of point of intersection of path 1 & path 2 |
(4) | 4^i+3^j |
(i) - (3), (ii) - (1), (iii) - (2), (iv) - (4)
(i) - (2), (ii) - (3), (iii) - (1), (iv) - (4)
(i) - (1), (ii) - (2), (iii) - (3), (iv) - (4)
(i) - (4), (ii) - (1), (iii) - (3), (iv) - (2)
- 500 m
- 300 m
- 150 m
- 100 m
- 620 m/s
- 894 m/s
- 682 m/s
- 864 m/s
- 4 m
- 3 m
- 2 m
- None of these
- 500 m
- 300 m
- 150 m
- 100 m
xA(t)=4t2, xB(t)=7
yA(t)=3t, yB(t)=3+4t2
Distance between these two particles at t=1 s is:-
- 5 m
- 3 m
- 4 m
- √12 m