Algebra of Derivatives
Trending Questions
Q.
For a function given by y=f(t) and x=g(t). Thendydx can be expressed as
df(t)dtdg(t)dt
False
True
Q.
If P(x) be a polynomial of degree 4, with P(2)=-1, P'(2)=0, P”(2)=2, P”'(2)=-12 and Pir(2) =24, then P”(1) is equal to
22
24
26
28
Q. If F(x)=f(x).g(x) and f′(x)g′(x)=c , where ‘c’ is a constant then f‘‘f+g‘‘g+2Cfg=
Q.
If a function is of form
f(z)=g(z)h(z), then
f′(z)=(h(z))d(g(z))dz+g(z)d(h(z))dz(h(z))2
- True
- False
Q. Let f be a function such that f(x+y)=f(x)+f(y) for all x and y and f(x)=(2x2+3x)g(x) for all x where g(x) is continuous and g(0)=9 then f'(0) is equals to
- 9
- 6
- 3
- 27
Q.
Given f(x)=tanx. Then f′(x) is equal to
sec2x
cosec2x
−sec2x
xsec2x
Q.
If x=sint, y=tcost. Then dydx is equal to
1+ttant
1−ttant
1−tant
tant−ttant
Q. If x=sin t, y=tcos t, dydx= .
- 1 + t tant
- 1 - t tant
- 1-tant
- tant - t tant
Q. Given that f(x)=sin xx. Then f'(x)= .
- cos xx
- −sin xx2
- x cos x−sin xx2
- x sin x+cos xx2
Q.
If P(x) be a polynomial of degree 4, with P(2)=-1, P'(2)=0, P”(2)=2, P”'(2)=-12 and Pir(2) =24, then P”(1) is equal to
22
24
26
28