Algebra of Roots of Quadratic Equations
Trending Questions
- 4
- 1
- 2
- 3
If the sum of the roots of the equation λx2+2x+3λ=0 be equal to their product & λ≠0, then find the value of λ.
6
-4
−23
4
If α, β be the roots of x2+px+q=0 and α+h, β+h are the roots of x2+rx+s=0, then
pr2=qs2
2h=[pq+rs]
p2−4q=r2−4s
pr=qs
- 2x2+9x+7=0
- 2x2−43x+203=0
- 50x2−45x+7=0
- 2x2−x−3=0
- −3
- 3
- 2
- −2
- 4
- 1
- −1
- 5
- 645
- −140
- 258
- 98
- −3√6
- −√6
- 3√6
- √6
If α, β are the roots of ax2+bx+c=0 then (aα+b)−3 +(aβ+b)−3
(b3–3abc)a3c3
a3−2abc
b3–3abc
(c3–3abc)b3c3
For the equation 3x2+px+3=0, p>0, if one of the roots is the square of the other, then find the value of p.
13
1
3
23
- 259
- 59
- 2581
- 527
- imaginary
- irrational
- rational and equal
- rational and distinct
- 18
- 36
- 9
- 27
- x2−57x+306=0
- x2+306x−57=0
- x2+57x+306=0
- x2+57x−306=0
If the sum of the roots of the equation λx2+2x+3λ=0 be equal to their product & λ≠0, then find the value of λ.
-4
4
−23
6
- S5=−ba5(b2−2ac)2−(b2−ac)bca4
- S5=−ba5(b2−2ac)2+(b2−ac)bca4
- aSn+1+bSn+cSn−1=0
- aSn+1+bSn+cSn−1=1
- −12
- 14
- 12
- −14
If α, β, γ are the roots of x3−x2−1=0, then the value of 1+α1−α+1+β1−β+1+γ1−γ=
−6
−7
−5
−2
If α, β are roots of x2−3ax+a2=0 such that a2+b2=1.75, then possible values of a are
12, −12
1, −12
-1 , - 12
1, 12
- −12
- 14
- −14
- 12
- √6
- −√6
- −3√6
- 3√6
x2+(2−λ)x+(10−λ)=0 is minimum, then the magnitude of the difference of the roots of this equation is :
- 2√5
- 20
- 2√7
- 4√2
- (−1, ∞)
- b∈(−∞, 0)∪(92, ∞)
- (1, ∞)
- (−∞, 1]
If α, β are the roots of the equation ax2+bx+c=0,
then αaβ+b+βaα+b=
2b
2a
−2a
2c
- 1
- b
- c
- 1c
- 2
- 8
- 4
- 6