Argument of a Complex Number
Trending Questions
What is the amplitude of a complex number?
How do you find the principal argument of
The amplitude of 1i is equal to
−π2
0
π2
−π
The argument of 1−i√31+i√3 is
60∘
120∘
210∘
240∘
- π−tan−1(43)
- −tan−1(34)
- π−tan−1(34)
- tan−1(43)
If z=1+2i1−(1−i)2, then arg (z) equals
π2
0
π
none of these
If , then the general value of is:
The amplitude of 1+i√3√3+i is
π3
−π3
−π6
π6
[MP PET 1994]
- −60o
- 60o
- 120o
- −120o
If less than , then equal
- (−10, 10)−{0}
- (0, 10)
- [100, ∞)
- (100, ∞)
Find the modulus and argument of the following complex numbers and hence express each of them in the poloar form :
(i) 1+i(ii) √3+i(iii) 1−i(iv) 1−i1+i(v) 11+i(vi) 1+2i1−3i(vii) sin 1200−i cos 1200(viii) −161+i√3
What is the domain of the function is
None of these
If and then prove that
- π2
- π4
- π
- −π4
If z=cosπ4+i sinπ6, then
|z|=1, arg (z)=π4
|z|=1, arg(z)=π6
|z|=√32, arg (z)=5π24
|z|=√32, arg (z)=tan−11√2
[RPET 1984; MP PET 1987; Karnataka CET 2001]
- −π2 and 1
- π2 and √2
- 0 and √2
- π2 and 1
If , then is equal to
Ifthen is equal to.
If θ is the amplitude of a+iba−ib, then tan θ
2aa2+b2
2aba2−b2
a2−b2a2+b2
none of these
If and lies in the second quadrant , then is equals to
lies between
none of these
If z=1+7i(2−i)2, then
amp (z)=3π4
|z|=2
|z|=12
amp (z)=π4
(a) discontinuous at only one point
(b) discontinuous exactly at two points
(c) discontinuous exactly at three points
(d) none of these
Find the modulus and argument of mentioned below complex number and hence express in polar form
−161+i√3
- π4
- π2
- 0
- −π2
Identify the like terms in the following-
[MP PET 1994]
- −60o
- 60o
- 120o
- −120o