Basic Inverse Trigonometric Functions
Trending Questions
Q.
If then prove that or .
Q.
If , then the value of is:
Q.
The sum of possible values of for is
Q.
Evaluate
Q.
is equal to
Q.
, then
Q. Find the range of f(x)= sgn(2^x)+sgn(|x+5|)
Q. The function y = cos x is one - to - one and onto in the interval [−π2, π2]
- True
- False
Q.
Find the value of cos
Q. The range of f(x) = log to the base root5 (root 2(sinx-cosx)+3) is?
Q. The domain of the function y=sin−1(−x2) is
- [0, 1]
- (0, 1)
- [−1, 1]
- (−∞, −1)∪(1, ∞)
Q.
Prove that
Q. If cot−1(nπ)>π6, n∈N, then the maximum value of n is
- 1
- 6
- 5
- 3
Q.
Prove that
Q.
Prove
sinA.sin(60-A).sin(60+A)=sin3A/4
Q.
How do you prove ?
Q.
In a , let , if is the inradius and is the circumradius of the , then equals
Q.
If , then
none of these
Q.
How do you find the integral of ?
Q.
If , then
Q. The value of limn→∞1nn∑j=1(2j−1)+8n(2j−1)+4n is equal to
- 1+2loge(32)
- 2−loge(23)
- 3+2loge(23)
- 5+loge(32)
Q. Let f(x)=cos(cos−1(2[x]−1)) where [⋅] is the greatest integer function, then
- Domain of f(x)=R−{0, 1}
- Range of f(x)=[−1, 1]−{0}
- Domain of f(x) excludes 3 integral values of x
- Range of f(x)={ 2k:k∈Z−{−1, 0, 1}}
Q. The curve y = f(x) is such that the area of the trapezium formed by the coordinate axes, ordinate of an arbitrary point and the tangent at this point equals half the square of its abscissa. The equation of the curve can be
- y=cx2±x
- y=cx2±1
- y=cx±x2
- y=cx2±x2±1
Q. If x, y∈[−1, 1], cos(sin−1x)+sin(cos−1y)=√112, (1−x2)(1−y2)=49, and x2+y2=ab2+3 for positive integers a and b, then the value of a+b is
- 14
- 7
- 21
- 10
Q. The three sides of a right-angled triangle are in G.P. (geometrical progression). If the two acute angles be α and β, then tanα and tanβ are
- √5+12 and √5−12
- √√5+12 and √√5−12
- √5 and 1√5
- √52 and 2√5
Q. For positive interger n, if f(n)=sinnθ+cosnθ, then f(3)−f(5)f(5)−f(7) is
- f(1)f(3)
- f(3)f(1)
- f(3)f(5)
- f(5)f(7)
Q.
If sec θ is the eccentricity of a hyperbola then the eccentricity of the conjugate hyberpola is
tan θ
cot θ
cos θ
cosec θ