Binomial Integral
Trending Questions
Q.
∫√1+x2x4dx
Q.
∫√x2+1[log(x2+1)−2 log x]x4dx
Q. Find the following integrals:
(i) ∫(x3−1)x2dx
(ii) ∫⎛⎜⎝x23+1⎞⎟⎠dx
(iii) ∫⎛⎜⎝x32+2ex−1x⎞⎟⎠dx
(i) ∫(x3−1)x2dx
(ii) ∫⎛⎜⎝x23+1⎞⎟⎠dx
(iii) ∫⎛⎜⎝x32+2ex−1x⎞⎟⎠dx
Q. Find the integral: ∫x3−x2+x−1x−1dx
Q. The value of the integral ∫ex2+4ln x−x3ex2x−1dx equal to
(where C is the constant of integration)
(where C is the constant of integration)
- (x2−1)ex22+C
- (x−1)xex22+C
- (x2−1)ex22x+C
- (x+1)ex22x+C
Q. Find the integral: ∫(2x2+ex)dx
Q. Consider In=∞∫0dx(x+√1+x2)n, where n>1, then which of the following statement(s) is/are true ?
- I2=23
- I2=25
- I10<I5
- I10>I5
Q. ∫1(x+1)√x−2dx=
- 2√3(tan−1(√x+1√3))+C
- 2√3(tan−1(√x−2√3))+C
- 2√3(tan−1(√x−2√2))+C
- 1√2(tan−1(√x−2√2))+C
Q. If ∫dxx√1−x3=a log∣∣∣√1−x3−1√1−x3+1∣∣∣+C then a =
- 13
- 23
- −13
- −23
Q. ∫√1+3√x3√x2dx is equal to
- −(1+x1/3)3/2+C
- 2(1+x1/3)3/2+C
- (1+x1/3)3/2+C
- None of these
Q. ∫x2−2x3√x2−1dx is equal to
- √x2−1x2
- −√x2−1x2
- x2√x2−1
- −x2√x2−1
Q. Prove that: [1+1tan2θ][1+1cot2θ]=1sin2θ−sin4θ
Q. ∫√1+3√x3√x2dx is equal to
- (1+x1/3)3/2+C
- −(1+x1/3)3/2+C
- 2(1+x1/3)3/2+C
- None of these
Q. ∫dx(x+1)√x2−1=
- √x+1x−1
- √x−1x+1
- √x+1x2+1
- √x2+1x−1
Q. ∫(x)13(2+x12)2 dx
Q. ∫21√(x−1)(2−x)dx=
- π8
- π4
- 18
- none
Q. The value of the integral ∫x(x−1)2(x+2)dx
(where m is an arbitrary constant)
(where m is an arbitrary constant)
- 29ln∣∣∣x−2x+4∣∣∣+13(x−1)+m
- 29ln∣∣∣x−1x+2∣∣∣−13(x−1)+m
- 23ln∣∣∣x+1x+2∣∣∣−13(x−1)+m
- 23ln∣∣∣x−1x+3∣∣∣−13(x−1)+m
Q. ∫1(x+1)√x−2dx
Q. The integral ∫dx(x+1)34(x−2)54 is equal to
- 4(x+1x−2)14+C
- −43(x+1x−2)14+C
- −43(x−2x+1)14+C
- 4(x−2x+1)14+C
Q. ∫(x)13(2+x12)2 dx
- 7x43+37x73+2411x116+C
- 4x43+37x73+2411x116+C
- 3x43+37x73+2411x116+C
- 11x43+37x73+2411x116+C
Q. The integral ∫dx(x+1)34(x−2)54 is equal to
- 4(x+1x−2)14+C
- −43(x+1x−2)14+C
- −43(x−2x+1)14+C
- 4(x−2x+1)14+C
Q. The integral ∫dx(x+1)34(x−2)54 is equal to
- −43(x+1x−2)14+C
- −43(x−2x+1)14+C
- 4(x−2x+1)14+C
- 4(x+1x−2)14+C