Chain Rule
Trending Questions
Q. Let m and n be two positive integers greater than 1. If
limα→0ecos(αn)−eαm=−e2
Then the value of mn is
limα→0ecos(αn)−eαm=−e2
Then the value of mn is
Q.
The value of is
Q. f(x) satisfies the relation f(x)−λπ/2∫0sinxcostf(t) dt=sinx.
If λ>2, then f(x) decreases in which of the following interval?
If λ>2, then f(x) decreases in which of the following interval?
- (0, π)
- (π2, 3π2)
- (−π2, π2)
- none of these
Q. 1∫−1x3+|x|+3x2+4|x|+3dx is
- 4π∫π20ln(sinα)dα
- −4π∫π20ln(cosα)dα
- −2π∫π20ln(sin2α)dα
- −4π∫π20(ln(sinα)+ln(cosα))dα
Q. ∫x3−x2+x−1x−1dx
Q. Let f and g be two continuous functions. Then ∫π/2−π/2{f(x)+f(−x)}{g(x)−g(−x)}dx is equal to
- 1
- π
- 0
- −1
Q. Evaluate ∫∞0sinxdx
Q. If cos−1x−cos−1y2−=α, then 4x2−4xycosα+y2 is equal to
- 4
- 2sin2α
- −4sin2α
- 4sin2α
Q. 1∫−1x3+|x|+3x2+4|x|+3dx is
- 4π∫π20ln(sinα)dα
- −4π∫π20ln(cosα)dα
- −2π∫π20ln(sin2α)dα
- −4π∫π20(ln(sinα)+ln(cosα))dα
Q. If f(x)=∣∣x2−5x+4∣∣, then value of ∫20f(x)dx is
- 2
- 0
- 1
- 3
Q. Represent sinα−icosα in polar form.
Q. If rolle's theorem is applicable on f(x)=xαtanx in [−π4, π4], then the value of α+1 can be
- 0
- 1
- 2
- 3
Q. If f(x)=sinx3+cos3x10 and f(nπ+x)=f(x), then the least positive integral value of n is