Complex Plane
Trending Questions
Q.
Find the value of (1001)^⅓ .
Q. Re (1+i)23−i=
- 1/10
-1/5
1/5
- –1/10
Q. If z and z' are complex numbers such that z.z' = z, then z' =
- 0+i0
- 1+0i
- 0+i
- 1+i
Q. If z and z' are complex numbers such that z.z' = z, then z' =
- 0+i
- 1+i
- 1+0i
- 0+i0
Q. Let C denote the set of complex numbers and R the set of real numbers. Let the function f:C→R be defined by f(z)=|z|. Then
- f is surjective but not injective
- f is injective but not surjective
- f is neither injective nor surjective
- f is both injective and surjective
Q.
Evaluate
Q. The derivative of f(tanx) w.r.t. g(secx) at x =Ï€/4 where f(1) = 2 and g(\sqrt2)= 4 is (1) 1/\sqrt2 (2) \sqrt2 (3) 1 (4) 1/
Q. If y=f(x2+2) and f′(3)=5, then dydx∣∣x=1 is
- 5
- 15
- 10
- 25
Q. Let z be a complex number such that |z−i|≤2. If z1=5+3i, then the maximum value of |iz+z1| is
- 7+√13
- 7+√12
- 7
- 9
Q. If z is any complex number satisfying |z−3−2i|≤2, then minimum value of |2z−6+5i| is___
- 5
- 2.5
- 4.5
- 9
Q. If z1 and z2 be two complex number, then Re (z1z2) =
- None of these
- Re (z1).Re(z2)
- Re (z1).Im(z2)
- Im (z1).Re(z2)
Q. Find the derivative of
y=(√x)^x +(log x)^(sinx)
Q. If l2i+m2i+n2i=1 and
lilj+mimj+ninj=0 for i≠j
where i, j∈{1, 2, 3} and
A=⎡⎢⎣l1m1n1l2m2n2l3m3n3⎤⎥⎦, then|A|=
lilj+mimj+ninj=0 for i≠j
where i, j∈{1, 2, 3} and
A=⎡⎢⎣l1m1n1l2m2n2l3m3n3⎤⎥⎦, then|A|=
- 4
- 3
- 1
- 2
Q. If Z is a complex number such that |z| greater than or equal to 2, then the minimum value of ∣∣z+12∣∣.
25
32
52
Less than 23
Q. 23. If f(x)=(x-4)/(2x), then find f(4)
Q. If z1 and z2 are complex numbers, such that z1+z2 is a real number, then
- z1=−¯¯¯¯¯z2
- z2=¯¯¯¯¯z1
- z1 and z1 are any two complex numbers
- z1=¯¯¯¯¯z1, z2=¯¯¯¯¯z2
Q. If z1 and z2 be two complex number, then Re (z1z2) =
- Re (z1).Re(z2)
- Re (z1).Im(z2)
- Im (z1).Re(z2)
- None of these
Q. If z is any complex number satisfying |z−3−2i|≤2, then minimum value of |2z−6+5i| is___
- 2.5
- 4.5
- 9
- 5
Q.
Simplify