Composition of Inverse Trigonometric Functions and Trigonometric Functions
Trending Questions
Q. If x=sin−1(sin10) and y=cos−1(cos10), then y−x is equal to :
- 0
- 10
- 7π
- π
Q. For any positive integer n, define fn:(0, ∞)→R as
fn(x)=n∑j=1tan−1(11+(x+j)(x+j−1)) for all x∈(0, ∞)
(Here, the inverse trigonometric function tan−1x assumes values in (−π2, π2) )
Then, which of the following statement(s) is (are) TRUE?
fn(x)=n∑j=1tan−1(11+(x+j)(x+j−1)) for all x∈(0, ∞)
(Here, the inverse trigonometric function tan−1x assumes values in (−π2, π2) )
Then, which of the following statement(s) is (are) TRUE?
- 5∑j=1tan2(fj(0))=55
- 10∑j=1(1+f′j(0))sec2(fj(0))=10
- For any fixed positive integer n, limx→∞tan(fn(x))=1n
- For any fixed positive integer n, limx→∞sec2(fn(x))=1
Q.
The value of integral
Q.
Examine that sin |x| is a continuous function.
Q. The value of cos−1(cos10)=
- 10
- 4π−10
- 2π+10
- 2π−10
Q.
Find the maximum and minimum values, if any, of the following functions given by
f(x)=|x+2|−1
g(x)=−|x+1|+3
h(x)=sin (2x)+5
f(x)=|sin 4x+3|
h(x)=x+1, x ϵ (−1, 1)
Q. Let m and M be respectively the minimum and maximum values of
∣∣ ∣ ∣∣cos2x1+sin2xsin2x1+cos2xsin2xsin2xcos2xsin2x1+sin2x∣∣ ∣ ∣∣
Then the ordered pair (m, M) is equal to:
∣∣ ∣ ∣∣cos2x1+sin2xsin2x1+cos2xsin2xsin2xcos2xsin2x1+sin2x∣∣ ∣ ∣∣
Then the ordered pair (m, M) is equal to:
- (–3, –1)
- (–4, –1)
- (1, 3)
- (–3, 3)
Q. Number of false relations of the following
(i)tan|tan−1x|=|x|(ii)cot|cot−1x|=|x|(iii)tan−1|tanx|=|x|(iv)sin|sin−1x|=|x| is:
(i)tan|tan−1x|=|x|(ii)cot|cot−1x|=|x|(iii)tan−1|tanx|=|x|(iv)sin|sin−1x|=|x| is:
- 1
- 2
- 3
- 4
Q.
Find the absolue maximum value and he absolute minimum value of the following functions in the given intervals:
f(x)=x3, xϵ[−2, 2]
f(x)=sinx+cosx, xϵ[0, π]
f(x)=4x−12x2, xϵ[−2, 92]
f(x)=(x−1)2+3, xϵ[−3, 1]
Q.
Show that the function given by f(x)=sin x is
neither increasing nor decreasing in (0, π)
Q. The solution set of tan theta = 3 cot theta is
Q.
If θ1 and θ2 are two value lying on [0, 2π] for which tanθ = λ then tan θ12.tan θ22 is
-1
2
1
0
Q. If p and q are the roots of 6x2+10x+1=0 then the value of ∣∣[tan−1p+tan−1q]∣∣ is
(where [ ] denotes greater integer function)
(where [ ] denotes greater integer function)
Q. If y = f(x) = tan x cot 3x, then
Q. α32cosec212(tan−1αβ)+β32sec2(12tan−1βα) is equal to
- (α−β)(α2+β2)
- (α+β)(α2−β2)
- (α+β)(α2+β2)
- None of the above
Q. In a ΔABC, angles A, B, C are in A.P. Then the value of limA→C√3−4sinAsinC|A−C| is:
Q. The value of tan−1(−1) is
- 45∘
- 135∘
- −45∘
- −60∘
Q. The value of cot−1(1)+cos−1(1√2) is
[1 mark]
[1 mark]
- π2
- π4
- π8
- π6
Q. Evaluate the limit:
limx→01−cos 2x+tan 2xx sin x
limx→01−cos 2x+tan 2xx sin x
Q. The set of values of x such that (cos−1x)2−3cos−1x+2>0, is/are
- [cos2, cos1]
- [0, 1]
- [−1, cos2)
- (cos1, 1]
Q. The value of sec−1(sec3)+cos−1(cos12)+cosec−1(cosec 6)+cot−1(cot10) is equal to
- 7−π
- π+7
- 7
- π−7
Q. Prove that 2sin2π6+cosec27π6cos2π3=32
Q. π/2∫−π/2sin4xcos6xdx is equal to
- 3π64
- 3π572
- 3π256
- 3π128
Q. 12cos−1(1−x1+x)=
- cot−1√x
- tan−1√x
- tan−1x
- cot−1x
Q. Prove that: 2sin23π4+2cos2π4+2sec2π3=10
Q. If I1=π/2∫0cos(sinx) dx; I2=π/2∫0sin(cosx) dx and I3=π/2∫0cosx dx, then
- I1>I2>I3
- I1>I3>I2
- I2>I3>I1
- I3>I1>I2
Q. The value of the integral ∫10dxx2+2xcosα+1, where 0<α<π2, is equal to
- αsinα
- sinα
- 3α−π2sinα
- α2sinα
Q. Ltx→0sin2x+asinxx3 exists and finite then a=
- 2
- −2
- −23
- 23
Q. The set of value(s) of k for which x2−kx+sin−1(sin4)>0 for all real x is
- ϕ
- (−2, 2)
- R
- (−1, 3)