Cross Product
Trending Questions
If the length of a vector is and direction ratios be then its direction cosines are.
None of these.
Let the vectors a and b be such that |a|=3 and |b|=√23, then a×b is a unit vector, if the angle between a and b is
a) π6
b) π4
c) π3
d) π2
Column (I)Column (II)(A) In R2, if the magnitude of the projectionvector of the vector α^i+β^j on √3^i+^j√3 and if α=2+√3β, then possiblevalue(s) of |α| is (are)(P) 1(B) Let a and b be real numbers such thatthe functionf(x)={−3ax2−2, x<1bx+a2, x≥1 is differentiable for all x∈R. Thenpossible value(s) of a is (are) (Q) 2(C) Let ω≠1 be a complex cube root ofunity. If (3−3ω+2ω2)4n+3+(2+3ω−3ω2)4n+3+(−3+2ω+3ω2)4n+3=0, then possible value(s) of n is (are)(R) 3(D) Let the harmonic mean of two positive realnumbers a and b be 4. If q is a positive realnumber such that a, 5, q, b is an arithmeticprogression, then the value(s) of |q−a| is (are)(S) 4(T) 5
Option (D) matches with which of the elements of right hand column?
- P
- Q
- R
- S
- T
Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides QR, RP, PQ respectively, of a triangle PQR.
If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is
−32
32
53
−53
If →a and →b are vectors such that |→a+→b|=√29 and →a×(2^i+3^j+4^k)=(2^i+3^j+4^k)×→b, then a possible value of (→a+→b).(−7^i+2^j+3^k) is
0
3
4
8
- Angle between →b and →c will always be obtuse
- →a−→c and →b are mutually perpendicular vectors
- →a+→c will be perpendicular to →b
- →a and →c are mutually perpendicular vectors
- →a=→b
- →a⊥→b
- →a||→b
- →a=m→b, m>1
Let a=2^i+^j−2^k, b=^i+^j and c be a vector such that |c−a|=3, |(a×b)×c|=3 and the angle between c and a×b is 30∘. Then, a⋅c is equal to
258
2
5
18
Column (I)Column (II)(A) In R2, if the magnitude of the projectionvector of the vector α^i+β^j on √3^i+^jis √3 and if α=2+√3β, then possiblevalue(s) of |α| is (are)(P) 1(B) Let a and b be real numbers such thatthe functionf(x)={−3ax2−2, x<1bx+a2, x≥1 is differentiable for all x∈R. Thenpossible value(s) of a is (are) (Q) 2(C) Let ω≠1 be a complex cube root ofunity. If (3−3ω+2ω2)4n+3+(2+3ω−3ω2)4n+3+(−3+2ω+3ω2)4n+3=0, then possible value(s) of n is (are)(R) 3(D) Let the harmonic mean of two positive realnumbers a and b be 4. If q is a positive realnumber such that a, 5, q, b is an arithmeticprogression, then the value(s) of |q−a| is (are)(S) 4(T) 5
Option (D) matches with which of the elements of right hand column?
- P
- Q
- R
- S
- T
If →a and →b are vectors such that |→a+→b|=√29 and →a×(2^i+3^j+4^k)=(2^i+3^j+4^k)×→b, then a possible value of (→a+→b).(−7^i+2^j+3^k) is
3
4
0
8
- ∣∣(→a×→b)×→c∣∣=32
- |→c|=1
- ∣∣(→a×→b)×→c∣∣=23
- |→c|=4
- √12−2
- 6
- 2
- 2+√12
- 15√2 sq. units
- 20 sq. units
- 25√14 sq. units
- 30 sq. units
Column (I)Column (II)(A) In R2, if the magnitude of the projectionvector of the vector α^i+β^j on √3^i+^j√3 and if α=2+√3β, then possiblevalue(s) of |α| is (are)(P) 1(B) Let a and b be real numbers such thatthe functionf(x)={−3ax2−2, x<1bx+a2, x≥1 is differentiable for all x∈R. Thenpossible value(s) of a is (are) (Q) 2(C) Let ω≠1 be a complex cube root ofunity. If (3−3ω+2ω2)4n+3+(2+3ω−3ω2)4n+3+(−3+2ω+3ω2)4n+3=0, then possible value(s) of n is (are)(R) 3(D) Let the harmonic mean of two positive realnumbers a and b be 4. If q is a positive realnumber such that a, 5, q, b is an arithmeticprogression, then the value(s) of |q−a| is (are)(S) 4(T) 5
Option (D) matches with which of the elements of right hand column?
- P
- Q
- R
- S
- T
- x=sinθ, y=cosθ, z=−cos2θ
- x=y=cosθ, z2=cos2θ
- x=cosθ, y=sinθ, z=cos2θ
- x=y=cosθ, z2=−cos2θ
- Cannot be calculated from the given data
- none of the above
- →a.→b=→b.→c=→c.→a
- →a×→b+→b×→c+→c×→a=0
- →a×→b=→b×→c=→c×→a
- →a.→b+→b.→c+→c.→a=0
- 45∘ or 135∘
- 30∘ or 150∘
- 90∘
- 60∘ or 120∘
- 4a23(4π−√3)
- 4a23(8π−3)
- None of these
- 4a23(4π+√3)
Let ΔPQR be a triangle. Let a = QR, b = RP and c = PQ. If |a|=12, |b|=4√3 and b.c=24, then which of the following is/are true ?
|c|22−|a|=12
|c|22+|a|=30
|a×b+c×a|=48√3
a.b=−72
Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides QR, RP, PQ respectively, of a triangle PQR.
|OX×OY|=
sin (Q + R)
sin (P+Q)
sin (P + R)
sin 2R
Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides QR, RP, PQ respectively, of a triangle PQR.
If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is
−32
32
53
−53
- 45o
- 90o
- 60o
- 30o
and i−j+k, −i+j+2k
- π6
- π2
- π3
- π4
Column (I)Column (II)(A) In R2, if the magnitude of the projectionvector of the vector α^i+β^j on √3^i+^jis √3 and if α=2+√3β, then possiblevalue(s) of |α| is (are)(P) 1(B) Let a and b be real numbers such thatthe functionf(x)={−3ax2−2, x<1bx+a2, x≥1 is differentiable for all x∈R. Thenpossible value(s) of a is (are) (Q) 2(C) Let ω≠1 be a complex cube root ofunity. If (3−3ω+2ω2)4n+3+(2+3ω−3ω2)4n+3+(−3+2ω+3ω2)4n+3=0, then possible value(s) of n is (are)(R) 3(D) Let the harmonic mean of two positive realnumbers a and b be 4. If q is a positive realnumber such that a, 5, q, b is an arithmeticprogression, then the value(s) of |q−a| is (are)(S) 4(T) 5
Option (D) matches with which of the elements of right hand column?
- P
- Q
- R
- S
- T
- √3
- 2√2
- √26
- √10
- ABBC
- BCAB
- BCCD
- CDBC
- not coplanar
- coplanar but cannot form a triangle
- coplanar but can form a triangle
- coplanar & can form a right angled triangle