Derivative Definition
Trending Questions
Q.
What is the formula of ?
Q. Show that the function defined by g(x)=x−[x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.
Q. Let f:R→R be a function such that f(x+y)=f(x)+f(y)+x2y+xy2 ∀x, y∈R. If limx→0f(x)x=1, then f(x) is
- 1+x22
- x−x23
- x+x33
- 1+x23
Q. Let f(x+y)=f(x)⋅f(y) ∀ x, y∈ R. If f(5)=2 and f′(0)=3, then the value of f′(5) is
Q. f(x)=x2 in 2≤x≤3 Is Rolle's theorem applicable?
Q. If the curves x=y4 and xy=k cut at right angles, then (4k)6 is equal to
Q. If y=(1+x)(1+2x)(1+3x), then the value of dydx at x=0 is
[1 mark]
[1 mark]
- 5
- 6
- 2
- 0
Q. If 3x/2+2x>25 then the solution set is
- R
- (2, +∞)
- (4, +∞)
- None of these
Q. The solution of (1+y+x2y)dx+(x+x3)dy=0 is:
- y+tan−1x=C
- xy+tan−1x=C
- x2+tan−1y/x=C
- y2+tan−1x=C
Q.
If the length of the tangent drawn at the point (1, 3) on the curve y=3x3 is a, then find the value of 9a2
Q. Let f(x+y)=f(x)⋅f(y) ∀ x, y∈ R. If f(5)=2 and f′(0)=3, then the value of f′(5) is
Q. If y=(1+x)(1+2x)(1+3x), then the value of dydx at x=0 is
[1 mark]
[1 mark]
- 0
- 2
- 6
- 5
Q. Let f:R→R be a function such that f(x+y)=f(x)+f(y)+x2y+xy2 ∀x, y∈R. If limx→0f(x)x=1, then f(x) is
- 1+x22
- x−x23
- x+x33
- 1+x23
Q. Let f:R→R be a function such that f(x+y)=f(x)+f(y)+x2y+xy2 ∀x, y∈R. If limx→0f(x)x=1, then f(x) is
- 1+x22
- x−x23
- x+x33
- 1+x23
Q. Let f(x+y)=f(x)⋅f(y) ∀ x, y∈ R. If f(5)=2 and f′(0)=3, then the value of f′(5) is
Q. Differentiate from first principle:
(iii) 1x3
(iii) 1x3