Derivative of a Determinant
Trending Questions
Q. If the determinant
∣∣ ∣∣xp+yxyyp+zyz0xp+yyp+z∣∣ ∣∣=0 and x, y, z, p∈R+ then
∣∣ ∣∣xp+yxyyp+zyz0xp+yyp+z∣∣ ∣∣=0 and x, y, z, p∈R+ then
- x, y, z are in A.P.
- x, y, z are in G.P.
- x, y, z are in H.P.
- xy, yz, zx are in A.P.
Q.
∣∣ ∣ ∣∣1+a2−b22ab−2b2ab1−a2+b22a2b−2a1−a2−b2∣∣ ∣ ∣∣=(1+a2+b2)3
Q. lf I=[1001], E=[0100], then (aI+bE)3=
- a3I+3ab2E
- a3I+3a2bE
- aI+bE
- a3I+b3E
Q. If f(y)=∣∣
∣
∣∣(1−y)a1b1(1−y)a1b2(1−y)a1b3(1−y)a2b1(1−y)a2b2(1−y)a2b3(1−y)a3b1(1−y)a3b2(1−y)a3b3∣∣
∣
∣∣ and a, b are even for i=1, 2, 3. then find f′(2)
Q. If f(y)=∣∣
∣
∣∣(1−y)a1b1(1−y)a1b2(1−y)a1b3(1−y)a2b1(1−y)a2b2(1−y)a2b3(1−y)a3b1(1−y)a3b2(1−y)a3b3∣∣
∣
∣∣ and ai, bi are even for i=1, 2, 3, then f′(2) is .
Q. If I=[1001] and E=[0100]
Then (aI+bE)3=a3I+ka2bE
Find the value of k.
Then (aI+bE)3=a3I+ka2bE
Find the value of k.
- 1
- 2
- 5
- 3
Q. If a, b, c>0 and x, y, zϵR, then the determinant ∣∣
∣
∣∣(ax+a−x)2(ax−a−x)21(by+b−y)2(by−b−y)21(cz+c−z)2(cz−c−z)21∣∣
∣
∣∣ is equal to
- a2xb2yc2z
- axbycx
- zero
- a−xb−yc−z
Q. Reduce the expression 11x−4−1x+6 in simplified form.
- 10
- 10(x−4)x+6
- x2+2x−2410
- 10x2+2x−24
Q. A=⎡⎢⎣00x0x0x00⎤⎥⎦, A100=?
- ⎡⎢⎣00x1000x1000x10000⎤⎥⎦
- ⎡⎢⎣x100000x100000x100⎤⎥⎦
- ⎡⎢⎣0x100000x100x10000⎤⎥⎦
- ⎡⎢⎣0x1000x1000000x100⎤⎥⎦
Q. If I=[1001].E=[0100] then show that (aI+bE)3=a3I+3a2bE.
Q. If z1=x1+iy1, z2=x2+iy2, then
2i∣∣∣x2y2x1y1∣∣∣ equals
2i∣∣∣x2y2x1y1∣∣∣ equals
- |z1|2−|z2|2
- |z1|2−|z1−z2|2
- ¯z1z2−z1¯z2
- z1¯z2−z2¯z1
Q. If A=⎡⎢⎣3−342−340−11⎤⎥⎦, then which of the following statements is/are correct?
I) An=A; ∀n∈N
II) A4=I
III) A−1=A3
II) A4=I
III) A−1=A3
- All three I, II and III
- Only I and II
- Only II and III
- only I
Q. If f(y)=∣∣
∣
∣∣(1−y)a1b1(1−y)a1b2(1−y)a1b3(1−y)a2b1(1−y)a2b2(1−y)a2b3(1−y)a3b1(1−y)a3b2(1−y)a3b3∣∣
∣
∣∣ and a, b are even for i=1, 2, 3. then find f′(2)
Q. If f(y)=∣∣
∣
∣∣(1−y)a1b1(1−y)a1b2(1−y)a1b3(1−y)a2b1(1−y)a2b2(1−y)a2b3(1−y)a3b1(1−y)a3b2(1−y)a3b3∣∣
∣
∣∣ and ai, bi are even for i=1, 2, 3, then f′(2) is .
Q. If f(y)=∣∣
∣
∣∣(1−y)a1b1(1−y)a1b2(1−y)a1b3(1−y)a2b1(1−y)a2b2(1−y)a2b3(1−y)a3b1(1−y)a3b2(1−y)a3b3∣∣
∣
∣∣ and a, b are even for i=1, 2, 3. then find f′(2)
Q. If f(y)=∣∣
∣
∣∣(1−y)a1b1(1−y)a1b2(1−y)a1b3(1−y)a2b1(1−y)a2b2(1−y)a2b3(1−y)a3b1(1−y)a3b2(1−y)a3b3∣∣
∣
∣∣ and ai, bi are even for i=1, 2, 3, then f′(2) is .
Q. If x≠y≠z and ∣∣
∣
∣∣1+x3x2x1+y3y2y1+z3z2z∣∣
∣
∣∣=0, then the value of xyz is
- −1
- −2
- 2
- 1