Domain
Trending Questions
Q. x+1/2 log(x+1/2) (x2+
2x-3/4x2-4x-3)
Q. Let [x] denote the greatest integer ≤x, where x∈R. If the domain of the real valued function f(x)=√|[x]|−2|[x]|−3 is (−∞, a)∪[b, c)∪[4, ∞), a<b<c, then the value of a+b+c is
- −2
- 1
- 8
- −3
Q. The domain of the definition of the function f(x)=14−x2+log10(x3−x) is :
- (−1, 0)∪(1, 2)∪(2, ∞)
- (−1, 0)∪(1, 2)∪(3, ∞)
- (1, 2)∪(2, ∞)
- (−2, −1)∪(−1, 0)∪(2, ∞)
Q. The domain of f(x)=√1−5x7−x−7 is
- (−∞, 0)∪(1, ∞)
- (−∞, −1]∪(0, ∞)
- (−∞, −1)∪[0, ∞)
- (−∞, −1]∪[0, ∞)
Q.
The function is
an even function
an odd function
a periodic function
neither an even nor an odd function
Q. The domain of the function f(x)=log|logx|, is
- (−∞, 1)∪(1, ∞)
- (−∞, 1)
- (0, 1)∪(1, ∞)
- (1, ∞)
Q. The domain of the function f(x)=ln{x} is
(where {.} represents fractional part function)
(where {.} represents fractional part function)
- R−Z
- R
- R+
- R−W
Q.
The domain of is
Q.
How do I find the value of .
Q.
The domain of is
Q. The domain of f(x)=√4−x2[x]+2 is (where [.] represents the greatest integer function)
- (−∞, 1)
- (−∞, −2)∪[−1, 2]
- (−∞, −1)∪[2, ∞)
- (−∞, 1)∪[2, ∞)
Q.
If R = {(x, y):x, yϵZ, x2+y2≤4} is a relation on Z, then domain of R is
None of these
{0, 1, 2}
{0, -1, -2}
{-2, -1, 0, 1, 2}
Q.
The range of the function is
Q.
The domain of definition of the function f(x)=√x−1+√3−x is
(−∞, 3)
(1, 3)
[1, 3]
[1, ∞]
Q.
The domain of definition of f(x)=√4x−x2 is
R - (0, 4)
R - [0, 4]
(0, 4)
[0, 4]
Q.
Let R be a relation on N defined by x + 2y = 8. The domain of R is
{2, 4, 8}
{1, 2, 3, 4}
{2, 4, 6}
{2, 4, 6, 8}
Q. The domain of f(x) = √a2−x2 (a > 0) is
- (-a, a)
- [-a, a]
- [0, a]
- (-a, 0]