Eccentric Angle : Hyperbola
Trending Questions
Q. The parametric coordinates of the point (8, 3√3) on the hyperbola 9x2−16y2=144 is
- (2sec60∘, 3tan60∘)
- (3sec60∘, 3tan60∘)
- (4sec60∘, 3tan60∘)
- (4sec30∘, 3tan30∘)
Q. The parametric coordinates of the point (8, 3√3) on the hyperbola 9x2−16y2=144 is
- (2sec60∘, 3tan60∘)
- (3sec60∘, 3tan60∘)
- (4sec60∘, 3tan60∘)
- (4sec30∘, 3tan30∘)
Q. Compute the following:
(i) [ab−ba]+[abba]
(ii) [a2+b2b2+c2a2+c2a2+b2]+[2ab2bc−2ac−2ab]
(iii) ⎡⎢⎣−182458−6165⎤⎥⎦+⎡⎢⎣1283702654⎤⎥⎦
(iv) [cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]
(i) [ab−ba]+[abba]
(ii) [a2+b2b2+c2a2+c2a2+b2]+[2ab2bc−2ac−2ab]
(iii) ⎡⎢⎣−182458−6165⎤⎥⎦+⎡⎢⎣1283702654⎤⎥⎦
(iv) [cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]
Q. If k+∣k+z2∣=∣z∣2(kϵR−), then possible argument of z is
- 0
- π
- π2
- None of these
Q. Write an anti derivative for each of the following functions using the method of inspection:
i) cos 2x
ii) 3x2+4x3
iii) 1x, x≠0
i) cos 2x
ii) 3x2+4x3
iii) 1x, x≠0
Q. All possible values of eccentric angle of (x1, y1) on x26+y22=1 whose distance fromt the centre is 2.
- ± 45.
- 45
- 90
- -45
Q. The value of ∫π−πcos2x1+axdx for a>0 is?
- π
- aπ
- π2
- 2π
Q. limx→0sinxn(sinx)m(m<n) is equal to
- 1
- None of he above
- 0
- nm
Q. Let f be a continuous function on R. If f(14n)=(sinen)e−n2+n2n2+1 then f(0) is -
- not unique
- 1
- data sufficient to find f(0)
- data insufficient to find f(0)
Q. All possible values of eccentric angle of (x1, y1) on x26+y22=1 whose distance fromt the centre is 2.
- ± 45.
- 45
- -45
- 90
Q. ∫5/20([x]+[−x])dx equals
- 52
- −52
- 72
- none of these
Q. If ABCD is a cyclic quadrilateral, then find which of the following statements is not correct.
- sin(A+C)=0
- sin(A+B)=0
- cos(B+D)=−1
- sin(A+B+C+D)=0
Q. Integrate the following with respect to x.
cosh3x
cosh3x
Q. If f(x) is continuous and f(92)=29, then limx→0f(1−cos3xx2) is equal to :
- 92
- 29
- 0
- 89
Q. If A=[cosAsinAsinA−cosA] then find the negative of value of |A|5.