Evaluation of Limit
Trending Questions
Q. If for all real triplets (a, b, c), f(x)=a+bx+cx2; then 1∫0f(x)dx is equal to :
- 13(f(0)+f(12))
- 16(f(0)+f(1)+4f(12))
- 2(3f(1)+2f(12))
- 12(f(1)+3f(12))
Q.
Write the value of limx→∞n!+(n+1)!(n+1)!+(n+2)!
Q.
limx→03x+1x+3
Q. yr=n!⋅n+r−1Cr−1rn where n=2r. If
limn→∞y is equal to (aeb) then value of a+b is
limn→∞y is equal to (aeb) then value of a+b is
Q.
The value of limn→∞{(n3+1)(n3+23)(n3+33)........(n3+n3)n3}1n is equal to α.eβ∫x31+x3dx, where αϵN, βϵR, then find α−β.
Q. Let the first term a of an infinite G.P. is the value of x, where the function f(x)=7+2xloge25−5x−1−52−x has the greatest value and the common ratio r is equal to limx→0x∫0t2x2tan(π+x) dt. Also, let S be the sum of infinite terms of G.P.
List IList II (A)a(P)4(B)1r(Q)3(C)S(R)2(D)a−rS(S)1(T)5
Which of the following is the only CORRECT combination?
List IList II (A)a(P)4(B)1r(Q)3(C)S(R)2(D)a−rS(S)1(T)5
Which of the following is the only CORRECT combination?
- (C)→(R), (D)→(S)
- (C)→(Q), (D)→(P)
- (C)→(Q), (D)→(S)
- (C)→(P), (D)→(T)
Q.
limx→π2sin 2xcos x
Q. If for all real triplets (a, b, c), f(x)=a+bx+cx2; then 1∫0f(x)dx is equal to :
- 2(3f(1)+2f(12))
- 13(f(0)+f(12))
- 12(f(1)+3f(12))
- 16(f(0)+f(1)+4f(12))
Q. If f(x)={2x+b if x<ax+d if x≥a and limx→af(x)=l, then l is equal to
- b+d
- b−d
- 2d+b
- 2d−b
Q. ∫10−2sgn(x−[x])dx equals, where [] denotes greatest integer function
- −12
- 10
- 12
- 8
Q.
The value of limn→∞{(n3+1)(n3+23)(n3+33)........(n3+n3)n3}1n is equal to α.eβ∫x31+x3dx, where αϵN, βϵR, then find α−β.
Q. Using differential, find the approximate values of the following:
(xxii). (1781)1/4
(xxii). (1781)1/4
Q. Let the first term a of an infinite G.P. is the value of x, where the function f(x)=7+2xloge25−5x−1−52−x has the greatest value and the common ratio r is equal to limx→0x∫0t2x2tan(π+x) dt. Also, let S be the sum of infinite terms of G.P.
List IList II (A)a(P)4(B)1r(Q)3(C)S(R)2(D)a−rS(S)1(T)5
Which of the following is the only CORRECT combination?
List IList II (A)a(P)4(B)1r(Q)3(C)S(R)2(D)a−rS(S)1(T)5
Which of the following is the only CORRECT combination?
- (A)→(R), (B)→(Q)
- (A)→(P), (B)→(R)
- (A)→(S), (B)→(P)
- (A)→(Q), (B)→(T)
Q. The sum of the series 1+14.2!+116.4!+164.6!+..... ad inf. is
- e−1√e
- e−12√e
- e+1√e
- None of these
Q.
limn→infty[1+2+3+⋯nn+2n2] is
−12
12
1
-1
Q.
The value of limn→∞{(n3+1)(n3+23)(n3+33)........(n3+n3)n3}1n is equal to α.eβ∫x31+x3dx, where αϵN, βϵR, then find α−β.