Expansions to Remove Indeterminate Form
Trending Questions
Q.
Evaluate
Q.
In is equal to
None of these
Q.
The value of is equal to
Q.
What is the derivative of with respect to .
Q.
If limx→1x+x2+x3⋯xn−nx−1=5050, then n equal
10
100
150
None of these
Q. Let α, β∈R be such that limx→0x2sin(βx)αx−sinx=1. Then 6(α+β) equals
Q. limx → 0cos(tan x)−cos xx4 is equal to
- 16
- −13
- 12
- 1
Q.
Find the limit: .
Q.
If then is:
Q. The value of limx→1x sgn(x−1) is
(where 'sgn' represents signum function)
(where 'sgn' represents signum function)
- −1
- 1
- 0
- limit does not exist
Q. Evaluate the given limit :
limx→0cosxπ−x
limx→0cosxπ−x
Q. The value of limx→03√1+sinx−3√1−sinxx is
- 23
- same as the value of limx→0sin2xtan3x
- same as the value of limx→0tan3xsin2x
- 32
Q.
In , and , then is equal to
Q. Let f(x)=1+eln(lnx)⋅ln(k2+25) and g(x)=1|x|−1. If limx→1f(x)g(x)=k(2sin2α+3cosβ+5), k>0 and α, β∈R, then which of the following statement(s) is (are) CORRECT?
- k=5
- sin10α+cos5βsin2α+cosβ=1
- cos2β+sin4α=2
- sin2α>cosβ
Q. The value of limx→0e1/x−1e1/x+1 is
- 1
- −1
- 0
- It does not exist
Q.
limx→4x2−16√x−2
Q.
The number of real values of satisfying the equation is
Infinite
Q.
If , then
Q. Evaluate :
i. limx→0sin4xsin2x
ii. limx→0tanxx
i. limx→0sin4xsin2x
ii. limx→0tanxx
Q. limx→7/2(2x2−9x+8)cot(2x−7) is equal to
- e52
- e−52
- e72
- e32
Q. If x>0 and g is bounded function, then limn→∞f(x)enx+g(x)enx+1 is
- g(x)
- 0
- None of these
- f(x)
Q.
limx→ 0[ln cos x4√1+x2−1]is equal to
2
-2
1
-1
Q. If the value of limx→0tan3x−sin3xx5 is α, then 2α=
Q. The value of limx→02xsin2x+3tanx+x2sinxsin3x is
- 2
- 3
- 1
- 0
Q.
limx→144x−12√x−1
Q. ___
You are given
cosx=1−x22!+x44!−x66!......;
sinx=x−x33!+x55!−x77!......;
tanx=x+x33+2x515......
Then the value of
limx→0xcosx+sinxx2+tanx is
Q. The value of limx→1x3−2x+1x−1 is
- 3
- 0
- 1
- does not exist
Q. The value of limx→01−8x−9x+(72)x(9x−8x)(tan9x−sin8x) is
- log8⋅log9⋅log(98)
- log8⋅log9⋅log(89)
- 6log8⋅log9⋅log(89)
- log8⋅log9log(98)