Focii of Ellipse
Trending Questions
The distance between the foci of the ellipse 3x2+4y2=48 is
2
6
8
4
- (x−2)23+(y+3)24=1
- (x+3)23+(y−2)24=1
- (x−2)24+(y+3)23=1
- (x+3)24+(y−2)23=1
- eccentricity is 35
- Length of minor axis is 8 units
- Length of major axis 10 units
- Centre of ellipse is (0, 0)
- (√5, 0)
- (2√5, 0)
- (−√5, 0)
- (−2√5, 0)
The three normals from a point to the parabola y2=4ax cut the axes in points, whose distances from the vertex are in A.P., then the locus of the point is
- 27ay2=2(x−2a)3
- 27ay3=2(x−2a)2
- 9ay2=2(x−2a)3
- 9ay3=2(x−2a)2
- x−1+2y−1=1
- 3x−1+y−1=1
- x−1+y−1=1
- 3x−1+2y−1=1
- 1√2
- √2915
- 12
- √1529
A(x1, y1) and B(x2, y2) are the end-points of diameter of a circle. Find the equation of the circle.
(x + x1) (x + x2) + (y + y1) (y + y2) = 0
(x - x1) (x - x2) + (y - y1) (y - y2) = 0
(x - x1) (x - x2) + (y + y1) (y + y2) = 0
(x + x1) (x + x2) - (y + y1) (y + y2) = 0
- λ−μ=61
- λ+μ=67
- λμ=192
- (λ)1μ=4
- ae
- 2ae
- ae2
- 2ae2
- (3√2, √2)
- (32, 2)
- (−32, −2)
- (−3√2, −√2)
- (3√2, √2)
- (32, 2)
- (−32, −2)
- (−3√2, −√2)
If and are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.
let S, S1 be the foci of an ellipse. If ∠BSS1 = θ, where B is any point on the ellipse. Then its eccentricity is
tan θ
sin θ
cotθ
cos θ
- x=3y+8
- y=3x+8
- 3y=x+8
- 3x=y+8
- x2+y2=a2+b2
- x2+y2=a2
- x2+y2=2a2
- x2+y2=a2−b2
The equation z¯z+(2−3i)z+(2+3i)¯z+4 =0 represents a circle of radius
2
4
3
6
- x2+y2−6y−7=0
- x2+y2−6y+7=0
- x2+y2−6y−5=0
- x2+y2−6y+5=0
- 2.11+x2
- 2.11−x2
- 2.−11+x2
- 2.−11−x2
- (e2−4e−25)
- (5e2−e−24)
- (e2−5e−24)
- (4e2−e−25)
The locus of the incentre of the △PSS′ is
- ellipse
- hyperbola
- parabola
- circle